File size: 35,059 Bytes
5c41cbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 |
{
"cells": [
{
"cell_type": "markdown",
"id": "47700837",
"metadata": {},
"source": [
"# DistilBERT Base Model\n",
"The following contains the code to create and train a DistilBERT model using the Huggingface library. It works quite well for a moderate amount of data, but the runtime increases quite drastically with data.\n",
"\n",
"I decided to take the pretrained model after all, still, creating the model myself was quite interesting!"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c09fa906",
"metadata": {},
"outputs": [],
"source": [
"from pathlib import Path\n",
"import torch\n",
"import time\n",
"from pathlib import Path\n",
"from transformers import DistilBertTokenizerFast\n",
"import os\n",
"from transformers import DistilBertConfig\n",
"from transformers import DistilBertForMaskedLM\n",
"from tokenizers import BertWordPieceTokenizer\n",
"from tqdm.auto import tqdm\n",
"from torch.optim import AdamW\n",
"import torchtest\n",
"from transformers import pipeline\n",
"\n",
"\n",
"from distilbert import test_model\n",
"from distilbert import Dataset\n",
"\n",
"import numpy as np"
]
},
{
"cell_type": "markdown",
"id": "3b773fac",
"metadata": {},
"source": [
"## Tokeniser\n",
"We need a way to convert the strings we get as the input to numerical tokens, that we can give to the neual network. Hence, we take a BertWorkPieceTokenizer (works for DistilBERT too) and create tokens from our words."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "24277c5b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tokeniser created\n"
]
}
],
"source": [
"fit_new_tokenizer = True\n",
"\n",
"if fit_new_tokenizer:\n",
" paths = [str(x) for x in Path('data/original').glob('**/*.txt')]\n",
"\n",
" tokenizer = BertWordPieceTokenizer(\n",
" clean_text=True,\n",
" handle_chinese_chars=False,\n",
" strip_accents=False,\n",
" lowercase=True\n",
" )\n",
" print(\"Tokeniser created\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "beacf3e3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\n"
]
}
],
"source": [
"# fit the tokenizer\n",
"if fit_new_tokenizer:\n",
" tokenizer.train(files=paths[:10], vocab_size=30_000, min_frequency=2,\n",
" limit_alphabet=1000, wordpieces_prefix='##',\n",
" special_tokens=['[PAD]', '[UNK]', '[CLS]', '[SEP]', '[MASK]'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0d462cc5",
"metadata": {},
"outputs": [],
"source": [
"if fit_new_tokenizer:\n",
" os.mkdir('./tokeniser')\n",
" tokenizer.save_model('tokeniser')\n",
" print(\"Tokeniser saved\")"
]
},
{
"cell_type": "markdown",
"id": "7eaa1667",
"metadata": {},
"source": [
"After having created a basic tokeniser, we use the model to initialise a DistilBert tokenizer, that we need for the model architecture later on. We save the tokeniser separately."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "f4dd0684",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"('distilbert_tokenizer/tokenizer_config.json',\n",
" 'distilbert_tokenizer/special_tokens_map.json',\n",
" 'distilbert_tokenizer/vocab.txt',\n",
" 'distilbert_tokenizer/added_tokens.json',\n",
" 'distilbert_tokenizer/tokenizer.json')"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tokenizer = DistilBertTokenizerFast.from_pretrained('tokeniser', max_len=512)\n",
"tokenizer.save_pretrained(\"distilbert_tokenizer\")"
]
},
{
"cell_type": "markdown",
"id": "bfcafcde",
"metadata": {},
"source": [
"### Testing\n",
"We now test the created tokenizer. We take a simple example and tokenise the input. It can be seen that we add a special token in the beginning and end ('CLS' and 'SEP'), which is how the BERT model was defined.\n",
"\n",
"When we translate the input back, we can see that we get the same, except for the first and last token. Also, we can see that questionmarks and commas are encoded separately."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "37e7f6a8",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'input_ids': [2, 10958, 16, 2175, 1993, 1965, 35, 3], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1]}\n"
]
}
],
"source": [
"tokens = tokenizer('Hello, how are you?')\n",
"print(tokens)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "bbd0c4b1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'[CLS] hello, how are you? [SEP]'"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tokenizer.decode(tokens['input_ids'])"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "4ab6e506",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[CLS]\n",
"hello\n",
",\n",
"how\n",
"are\n",
"you\n",
"?\n",
"[SEP]\n"
]
}
],
"source": [
"for tok in tokens['input_ids']:\n",
" print(tokenizer.decode(tok))"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "c75d3255",
"metadata": {},
"outputs": [],
"source": [
"assert len(tokenizer.vocab) == 30_000"
]
},
{
"cell_type": "markdown",
"id": "dd114355",
"metadata": {},
"source": [
"## Dataset\n",
"We now define a function to mask some of the tokens. In particular, we create a Dataset class, that automates loading the data and tokenising it for us. Lastly, we use a DataLoader to load the data step by step into memory.\n",
"\n",
"The big problem with the limited resources we have is memory. In particular, I am loading the data sequentially, file by file, keeping track how many samples have been read. Shuffling wouldn't work here (it would also not make a lot of sense for this dataset)."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "bff9ea54",
"metadata": {},
"outputs": [],
"source": [
"# create dataset and dataloader \n",
"dataset = Dataset(paths = [str(x) for x in Path('data/original').glob('**/*.txt')][50:70], tokenizer=tokenizer)\n",
"loader = torch.utils.data.DataLoader(dataset, batch_size=8)\n",
"\n",
"test_dataset = Dataset(paths = [str(x) for x in Path('data/original').glob('**/*.txt')][10:12], tokenizer=tokenizer)\n",
"test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=4)"
]
},
{
"cell_type": "markdown",
"id": "6bbe6e63",
"metadata": {},
"source": [
"### Testing\n",
"The randomisation makes it a bit difficult to test. But altogether, we see that the input ids, masks and labels have the same shape. Also, as we mask 15% of the samples, when decoding a given sample, we can see that some samples are now '[MASK]'."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "436ab745",
"metadata": {},
"outputs": [],
"source": [
"i = iter(dataset)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "330e599d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Passed\n"
]
}
],
"source": [
"for j in range(10):\n",
" sample = next(i)\n",
" \n",
" input_ids = sample['input_ids']\n",
" attention_masks = sample['attention_mask']\n",
" labels = sample['labels']\n",
" \n",
" # check if the dimensions are right\n",
" assert input_ids.shape[0] == (512)\n",
" assert attention_masks.shape[0] == (512)\n",
" assert labels.shape[0] == (512)\n",
" \n",
" # if the input ids are not masked, the labels are the same as the input ids\n",
" assert np.array_equal(input_ids[input_ids != 4].numpy(),labels[input_ids != 4].numpy())\n",
" # input ids are zero if the attention masks are zero\n",
" assert np.all(input_ids[attention_masks == 0].numpy()==0)\n",
" # check if input contains masked tokens (we can't guarantee this 100% but this will apply) most likely\n",
" assert np.any(input_ids.numpy() == 4)\n",
"print(\"Passed\")"
]
},
{
"cell_type": "markdown",
"id": "08db6d22",
"metadata": {},
"source": [
"## Model\n",
"In the following section, we intialise and train a model."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "7803bda6",
"metadata": {},
"outputs": [],
"source": [
"config = DistilBertConfig(\n",
" vocab_size=30000,\n",
" max_position_embeddings=514\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "8ca03f6a",
"metadata": {},
"outputs": [],
"source": [
"model = DistilBertForMaskedLM(config)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "4da22bff",
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/sanju/anaconda3/envs/myenv/lib/python3.10/site-packages/torch/cuda/__init__.py:83: UserWarning: CUDA initialization: CUDA unknown error - this may be due to an incorrectly set up environment, e.g. changing env variable CUDA_VISIBLE_DEVICES after program start. Setting the available devices to be zero. (Triggered internally at ../c10/cuda/CUDAFunctions.cpp:109.)\n",
" return torch._C._cuda_getDeviceCount() > 0\n"
]
},
{
"data": {
"text/plain": [
"DistilBertForMaskedLM(\n",
" (activation): GELUActivation()\n",
" (distilbert): DistilBertModel(\n",
" (embeddings): Embeddings(\n",
" (word_embeddings): Embedding(30000, 768, padding_idx=0)\n",
" (position_embeddings): Embedding(514, 768)\n",
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" )\n",
" (transformer): Transformer(\n",
" (layer): ModuleList(\n",
" (0): TransformerBlock(\n",
" (attention): MultiHeadSelfAttention(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (q_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (k_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (v_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (out_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" )\n",
" (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" (ffn): FFN(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (lin1): Linear(in_features=768, out_features=3072, bias=True)\n",
" (lin2): Linear(in_features=3072, out_features=768, bias=True)\n",
" (activation): GELUActivation()\n",
" )\n",
" (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" )\n",
" (1): TransformerBlock(\n",
" (attention): MultiHeadSelfAttention(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (q_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (k_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (v_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (out_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" )\n",
" (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" (ffn): FFN(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (lin1): Linear(in_features=768, out_features=3072, bias=True)\n",
" (lin2): Linear(in_features=3072, out_features=768, bias=True)\n",
" (activation): GELUActivation()\n",
" )\n",
" (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" )\n",
" (2): TransformerBlock(\n",
" (attention): MultiHeadSelfAttention(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (q_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (k_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (v_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (out_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" )\n",
" (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" (ffn): FFN(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (lin1): Linear(in_features=768, out_features=3072, bias=True)\n",
" (lin2): Linear(in_features=3072, out_features=768, bias=True)\n",
" (activation): GELUActivation()\n",
" )\n",
" (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" )\n",
" (3): TransformerBlock(\n",
" (attention): MultiHeadSelfAttention(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (q_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (k_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (v_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (out_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" )\n",
" (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" (ffn): FFN(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (lin1): Linear(in_features=768, out_features=3072, bias=True)\n",
" (lin2): Linear(in_features=3072, out_features=768, bias=True)\n",
" (activation): GELUActivation()\n",
" )\n",
" (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" )\n",
" (4): TransformerBlock(\n",
" (attention): MultiHeadSelfAttention(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (q_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (k_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (v_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (out_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" )\n",
" (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" (ffn): FFN(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (lin1): Linear(in_features=768, out_features=3072, bias=True)\n",
" (lin2): Linear(in_features=3072, out_features=768, bias=True)\n",
" (activation): GELUActivation()\n",
" )\n",
" (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" )\n",
" (5): TransformerBlock(\n",
" (attention): MultiHeadSelfAttention(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (q_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (k_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (v_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (out_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" )\n",
" (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" (ffn): FFN(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (lin1): Linear(in_features=768, out_features=3072, bias=True)\n",
" (lin2): Linear(in_features=3072, out_features=768, bias=True)\n",
" (activation): GELUActivation()\n",
" )\n",
" (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" )\n",
" )\n",
" )\n",
" )\n",
" (vocab_transform): Linear(in_features=768, out_features=768, bias=True)\n",
" (vocab_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" (vocab_projector): Linear(in_features=768, out_features=30000, bias=True)\n",
" (mlm_loss_fct): CrossEntropyLoss()\n",
")"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# if we have a GPU - train on gpu\n",
"device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')\n",
"model.to(device)"
]
},
{
"cell_type": "markdown",
"id": "6fb8c2e2",
"metadata": {},
"source": [
"### Testing the model\n",
"I stumbled across some Medium articles on how to test DeepLearning models beforehand \n",
"* https://thenerdstation.medium.com/how-to-unit-test-machine-learning-code-57cf6fd81765: the package is however deprecated\n",
"* https://towardsdatascience.com/testing-your-pytorch-models-with-torcheck-cb689ecbc08c: released a package (torcheck)\n",
"* https://github.com/suriyadeepan/torchtest: I found this package, which is the PyTorch version of the first one and is still maintained.\n",
"\n",
"Essentially, testing a model is inherently difficult, because we do not know the result in the beginning. Still, the following four conditions should be satisfied in every model (see second reference above):\n",
"1. The parameters should change during training (if they are not frozen).\n",
"2. The parameters should not change if they are frozen.\n",
"3. The range of the ouput should be in a predefined range.\n",
"4. The parameters should never contain NaN. The same goes for the outputs too.\n",
"\n",
"I tried using the packages, but they do not trivially apply for models with multiple inputs (we have input ids and attention masks). The following is partly adapted from the torchtest package (https://github.com/suriyadeepan/torchtest/blob/master/torchtest/torchtest.py)."
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "cfd33fa1",
"metadata": {},
"outputs": [],
"source": [
"# get smaller dataset\n",
"test_ds = Dataset(paths = [str(x) for x in Path('data/original').glob('**/*.txt')][:2], tokenizer=tokenizer)\n",
"test_ds_loader = torch.utils.data.DataLoader(test_ds, batch_size=2)\n",
"optim=torch.optim.Adam(model.parameters())"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "907db815",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Passed\n"
]
}
],
"source": [
"from distilbert import test_model\n",
"\n",
"test_model(model, optim, test_ds_loader, device)"
]
},
{
"cell_type": "markdown",
"id": "c02c9c4b",
"metadata": {},
"source": [
"### Training the model\n",
"We use AdamW as the optimiser and train for 10 epochs."
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "178914f8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"DistilBertForMaskedLM(\n",
" (activation): GELUActivation()\n",
" (distilbert): DistilBertModel(\n",
" (embeddings): Embeddings(\n",
" (word_embeddings): Embedding(30000, 768, padding_idx=0)\n",
" (position_embeddings): Embedding(514, 768)\n",
" (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" )\n",
" (transformer): Transformer(\n",
" (layer): ModuleList(\n",
" (0): TransformerBlock(\n",
" (attention): MultiHeadSelfAttention(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (q_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (k_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (v_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (out_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" )\n",
" (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" (ffn): FFN(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (lin1): Linear(in_features=768, out_features=3072, bias=True)\n",
" (lin2): Linear(in_features=3072, out_features=768, bias=True)\n",
" (activation): GELUActivation()\n",
" )\n",
" (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" )\n",
" (1): TransformerBlock(\n",
" (attention): MultiHeadSelfAttention(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (q_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (k_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (v_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (out_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" )\n",
" (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" (ffn): FFN(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (lin1): Linear(in_features=768, out_features=3072, bias=True)\n",
" (lin2): Linear(in_features=3072, out_features=768, bias=True)\n",
" (activation): GELUActivation()\n",
" )\n",
" (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" )\n",
" (2): TransformerBlock(\n",
" (attention): MultiHeadSelfAttention(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (q_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (k_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (v_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (out_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" )\n",
" (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" (ffn): FFN(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (lin1): Linear(in_features=768, out_features=3072, bias=True)\n",
" (lin2): Linear(in_features=3072, out_features=768, bias=True)\n",
" (activation): GELUActivation()\n",
" )\n",
" (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" )\n",
" (3): TransformerBlock(\n",
" (attention): MultiHeadSelfAttention(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (q_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (k_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (v_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (out_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" )\n",
" (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" (ffn): FFN(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (lin1): Linear(in_features=768, out_features=3072, bias=True)\n",
" (lin2): Linear(in_features=3072, out_features=768, bias=True)\n",
" (activation): GELUActivation()\n",
" )\n",
" (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" )\n",
" (4): TransformerBlock(\n",
" (attention): MultiHeadSelfAttention(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (q_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (k_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (v_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (out_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" )\n",
" (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" (ffn): FFN(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (lin1): Linear(in_features=768, out_features=3072, bias=True)\n",
" (lin2): Linear(in_features=3072, out_features=768, bias=True)\n",
" (activation): GELUActivation()\n",
" )\n",
" (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" )\n",
" (5): TransformerBlock(\n",
" (attention): MultiHeadSelfAttention(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (q_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (k_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (v_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" (out_lin): Linear(in_features=768, out_features=768, bias=True)\n",
" )\n",
" (sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" (ffn): FFN(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (lin1): Linear(in_features=768, out_features=3072, bias=True)\n",
" (lin2): Linear(in_features=3072, out_features=768, bias=True)\n",
" (activation): GELUActivation()\n",
" )\n",
" (output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" )\n",
" )\n",
" )\n",
" )\n",
" (vocab_transform): Linear(in_features=768, out_features=768, bias=True)\n",
" (vocab_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
" (vocab_projector): Linear(in_features=768, out_features=30000, bias=True)\n",
" (mlm_loss_fct): CrossEntropyLoss()\n",
")"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model = DistilBertForMaskedLM(config)\n",
"# if we have a GPU - train on gpu\n",
"device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')\n",
"model.to(device)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "bb6532be",
"metadata": {},
"outputs": [],
"source": [
"# we use AdamW as the optimiser\n",
"optim = AdamW(model.parameters(), lr=1e-4)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2fd5d609",
"metadata": {},
"outputs": [],
"source": [
"epochs = 10\n",
"\n",
"for epoch in range(epochs):\n",
" loop = tqdm(loader, leave=True)\n",
" \n",
" # set model to training mode\n",
" model.train()\n",
" losses = []\n",
" \n",
" # iterate over dataset\n",
" for batch in loop:\n",
" optim.zero_grad()\n",
" \n",
" # copy input to device\n",
" input_ids = batch['input_ids'].to(device)\n",
" attention_mask = batch['attention_mask'].to(device)\n",
" labels = batch['labels'].to(device)\n",
" \n",
" # predict\n",
" outputs = model(input_ids, attention_mask=attention_mask, labels=labels)\n",
" \n",
" # update weights\n",
" loss = outputs.loss\n",
" loss.backward()\n",
" \n",
" optim.step()\n",
" \n",
" # output current loss\n",
" loop.set_description(f'Epoch {epoch}')\n",
" loop.set_postfix(loss=loss.item())\n",
" losses.append(loss.item())\n",
" \n",
" del input_ids\n",
" del attention_mask\n",
" del labels\n",
" \n",
" print(\"Mean Training Loss\", np.mean(losses))\n",
" losses = []\n",
" loop = tqdm(test_loader, leave=True)\n",
" \n",
" # set model to evaluation mode\n",
" model.eval()\n",
" \n",
" # iterate over dataset\n",
" for batch in loop:\n",
" # copy input to device\n",
" input_ids = batch['input_ids'].to(device)\n",
" attention_mask = batch['attention_mask'].to(device)\n",
" labels = batch['labels'].to(device)\n",
" \n",
" # predict\n",
" outputs = model(input_ids, attention_mask=attention_mask, labels=labels)\n",
" \n",
" # update weights\n",
" loss = outputs.loss\n",
" \n",
" # output current loss\n",
" loop.set_description(f'Epoch {epoch}')\n",
" loop.set_postfix(loss=loss.item())\n",
" losses.append(loss.item())\n",
" \n",
" del input_ids\n",
" del attention_mask\n",
" del labels\n",
" print(\"Mean Test Loss\", np.mean(losses))"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "03c23c3e",
"metadata": {},
"outputs": [],
"source": [
"# save the pretrained model\n",
"torch.save(model, \"distilbert.model\")"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "9b18d3e3",
"metadata": {},
"outputs": [],
"source": [
"model = torch.load(\"distilbert.model\")"
]
},
{
"cell_type": "markdown",
"id": "e6ad94db",
"metadata": {},
"source": [
"### Testing\n",
"Huggingface provides a library to quickly be able to see what word the model would predict for our masked token."
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "7c8582d2",
"metadata": {},
"outputs": [],
"source": [
"fill = pipeline(\"fill-mask\", model='distilbert', config=config, tokenizer='distilbert_tokenizer')"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "d309e57f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'score': 0.19730663299560547,\n",
" 'token': 2965,\n",
" 'token_str': 'change',\n",
" 'sequence': 'it seems important to tackle the climate change.'},\n",
" {'score': 0.12946806848049164,\n",
" 'token': 5215,\n",
" 'token_str': 'crisis',\n",
" 'sequence': 'it seems important to tackle the climate crisis.'},\n",
" {'score': 0.05868387222290039,\n",
" 'token': 3688,\n",
" 'token_str': 'issues',\n",
" 'sequence': 'it seems important to tackle the climate issues.'},\n",
" {'score': 0.047418754547834396,\n",
" 'token': 3406,\n",
" 'token_str': 'issue',\n",
" 'sequence': 'it seems important to tackle the climate issue.'},\n",
" {'score': 0.027855267748236656,\n",
" 'token': 2629,\n",
" 'token_str': 'here',\n",
" 'sequence': 'it seems important to tackle the climate here.'}]"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fill(f'It seems important to tackle the climate {fill.tokenizer.mask_token}.')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "94e3e623",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.10.8 ('venv': venv)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
},
"vscode": {
"interpreter": {
"hash": "85bf9c14e9ba73b783ed1274d522bec79eb0b2b739090180d8ce17bb11aff4aa"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|