pm commited on
Commit
90c5f6b
·
verified ·
1 Parent(s): 20798c8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -70
README.md CHANGED
@@ -1,70 +1,72 @@
1
- ---
2
- library_name: transformers
3
- license: apache-2.0
4
- base_model: distilbert/distilroberta-base
5
- tags:
6
- - generated_from_trainer
7
- model-index:
8
- - name: go-emotions-plus-other-datasets-fine-tuned-distilroberta
9
- results: []
10
- ---
11
-
12
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
- should probably proofread and complete it, then remove this comment. -->
14
-
15
- # go-emotions-plus-other-datasets-fine-tuned-distilroberta
16
-
17
- This model is a fine-tuned version of [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the None dataset.
18
- It achieves the following results on the evaluation set:
19
- - Loss: 0.0719
20
- - Micro Precision: 0.7358
21
- - Micro Recall: 0.5840
22
- - Micro F1: 0.6512
23
- - Macro Precision: 0.5957
24
- - Macro Recall: 0.4191
25
- - Macro F1: 0.4670
26
- - Weighted Precision: 0.7120
27
- - Weighted Recall: 0.5840
28
- - Weighted F1: 0.6286
29
- - Hamming Loss: 0.0266
30
-
31
- ## Model description
32
-
33
- More information needed
34
-
35
- ## Intended uses & limitations
36
-
37
- More information needed
38
-
39
- ## Training and evaluation data
40
-
41
- More information needed
42
-
43
- ## Training procedure
44
-
45
- ### Training hyperparameters
46
-
47
- The following hyperparameters were used during training:
48
- - learning_rate: 5e-05
49
- - train_batch_size: 8
50
- - eval_batch_size: 8
51
- - seed: 42
52
- - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
53
- - lr_scheduler_type: linear
54
- - num_epochs: 3.0
55
-
56
- ### Training results
57
-
58
- | Training Loss | Epoch | Step | Validation Loss | Micro Precision | Micro Recall | Micro F1 | Macro Precision | Macro Recall | Macro F1 | Weighted Precision | Weighted Recall | Weighted F1 | Hamming Loss |
59
- |:-------------:|:-----:|:-----:|:---------------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:|:------------:|
60
- | No log | 1.0 | 10377 | 0.0788 | 0.7494 | 0.4946 | 0.5959 | 0.5505 | 0.3191 | 0.3567 | 0.7217 | 0.4946 | 0.5559 | 0.0285 |
61
- | No log | 2.0 | 20754 | 0.0723 | 0.7354 | 0.5782 | 0.6474 | 0.6452 | 0.3792 | 0.4259 | 0.7312 | 0.5782 | 0.6154 | 0.0268 |
62
- | No log | 3.0 | 31131 | 0.0719 | 0.7358 | 0.5840 | 0.6512 | 0.5957 | 0.4191 | 0.4670 | 0.7120 | 0.5840 | 0.6286 | 0.0266 |
63
-
64
-
65
- ### Framework versions
66
-
67
- - Transformers 4.47.0
68
- - Pytorch 2.3.1+cu121
69
- - Datasets 2.20.0
70
- - Tokenizers 0.21.0
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: distilbert/distilroberta-base
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: go-emotions-plus-other-datasets-fine-tuned-distilroberta
9
+ results: []
10
+ datasets:
11
+ - google-research-datasets/go_emotions
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # go-emotions-plus-other-datasets-fine-tuned-distilroberta
18
+
19
+ This model is a fine-tuned version of [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.0719
22
+ - Micro Precision: 0.7358
23
+ - Micro Recall: 0.5840
24
+ - Micro F1: 0.6512
25
+ - Macro Precision: 0.5957
26
+ - Macro Recall: 0.4191
27
+ - Macro F1: 0.4670
28
+ - Weighted Precision: 0.7120
29
+ - Weighted Recall: 0.5840
30
+ - Weighted F1: 0.6286
31
+ - Hamming Loss: 0.0266
32
+
33
+ ## Model description
34
+
35
+ More information needed
36
+
37
+ ## Intended uses & limitations
38
+
39
+ More information needed
40
+
41
+ ## Training and evaluation data
42
+
43
+ More information needed
44
+
45
+ ## Training procedure
46
+
47
+ ### Training hyperparameters
48
+
49
+ The following hyperparameters were used during training:
50
+ - learning_rate: 5e-05
51
+ - train_batch_size: 8
52
+ - eval_batch_size: 8
53
+ - seed: 42
54
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
55
+ - lr_scheduler_type: linear
56
+ - num_epochs: 3.0
57
+
58
+ ### Training results
59
+
60
+ | Training Loss | Epoch | Step | Validation Loss | Micro Precision | Micro Recall | Micro F1 | Macro Precision | Macro Recall | Macro F1 | Weighted Precision | Weighted Recall | Weighted F1 | Hamming Loss |
61
+ |:-------------:|:-----:|:-----:|:---------------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:|:------------:|
62
+ | No log | 1.0 | 10377 | 0.0788 | 0.7494 | 0.4946 | 0.5959 | 0.5505 | 0.3191 | 0.3567 | 0.7217 | 0.4946 | 0.5559 | 0.0285 |
63
+ | No log | 2.0 | 20754 | 0.0723 | 0.7354 | 0.5782 | 0.6474 | 0.6452 | 0.3792 | 0.4259 | 0.7312 | 0.5782 | 0.6154 | 0.0268 |
64
+ | No log | 3.0 | 31131 | 0.0719 | 0.7358 | 0.5840 | 0.6512 | 0.5957 | 0.4191 | 0.4670 | 0.7120 | 0.5840 | 0.6286 | 0.0266 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.47.0
70
+ - Pytorch 2.3.1+cu121
71
+ - Datasets 2.20.0
72
+ - Tokenizers 0.21.0