File size: 1,432 Bytes
e9e2022
ec792df
d9cdb17
d185548
 
e801441
d9cdb17
e9e2022
 
d185548
e9e2022
d185548
e9e2022
d185548
e9e2022
 
d185548
e9e2022
d185548
 
e9e2022
d185548
 
 
 
e9e2022
d185548
e9e2022
d185548
 
e9e2022
d185548
 
 
e9e2022
d185548
 
 
 
 
e9e2022
d185548
 
ec792df
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
---
license: apache-2.0
library_name: transformers
datasets:
- kde4
widget:
- text: Hi! How are you?
---

## Model Summary

dataequity-opus-mt-en-es is a Transformer based language translator fine tuned using the kde dataset. The base model used is Helsinki-NLP/opus-mt-en-es

Our model hasn't been fine-tuned through reinforcement learning from human feedback. The intention behind crafting this open-source model is to provide the research community with a non-restricted small model to explore vital safety challenges, such as reducing toxicity, understanding societal biases, enhancing controllability, and more.


### eng-spa

* source group: English 
* target group: Spanish 

* model: transformer
* source language(s): en
* target language(s): es
* model: transformer

### Inference Code:

```python
from transformers import MarianMTModel, MarianTokenizer,

hub_repo_name = 'sandeepsundaram/dataequity-opus-mt-en-es'
tokenizer = MarianTokenizer.from_pretrained(hub_repo_name)
finetuned_model = MarianMTModel.from_pretrained(hub_repo_name)

questions = [
    "How are the first days of each season chosen?",
    "Why are laws requiring identification for voting scrutinized by the media?",
    "Why aren't there many new operating systems being created?"
]

translated = finetuned_model.generate(**tokenizer(questions, return_tensors="pt", padding=True))
[tokenizer.decode(t, skip_special_tokens=True) for t in translated]
```