File size: 1,394 Bytes
e9e2022
 
d185548
 
 
e9e2022
 
d185548
e9e2022
d185548
e9e2022
d185548
e9e2022
 
d185548
e9e2022
d185548
 
e9e2022
d185548
 
 
 
e9e2022
d185548
e9e2022
d185548
 
e9e2022
d185548
 
 
e9e2022
d185548
 
 
 
 
e9e2022
d185548
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
---
library_name: transformers
license: mit
datasets:
- kde4
---

## Model Summary

dataequity-opus-mt-en-es is a Transformer based language translator fine tuned using the kde dataset. The base model used is Helsinki-NLP/opus-mt-en-es

Our model hasn't been fine-tuned through reinforcement learning from human feedback. The intention behind crafting this open-source model is to provide the research community with a non-restricted small model to explore vital safety challenges, such as reducing toxicity, understanding societal biases, enhancing controllability, and more.


### eng-spa

* source group: English 
* target group: Spanish 

* model: transformer
* source language(s): en
* target language(s): es
* model: transformer

### Inference Code:

```python
from transformers import MarianMTModel, MarianTokenizer,

hub_repo_name = 'sandeepsundaram/dataequity-opus-mt-en-es'
tokenizer = MarianTokenizer.from_pretrained(hub_repo_name)
finetuned_model = MarianMTModel.from_pretrained(hub_repo_name)

questions = [
    "How are the first days of each season chosen?",
    "Why are laws requiring identification for voting scrutinized by the media?",
    "Why aren't there many new operating systems being created?"
]

translated = finetuned_model.generate(**tokenizer(questions, return_tensors="pt", padding=True))
[tokenizer.decode(t, skip_special_tokens=True) for t in translated]
```