--- license: apache-2.0 language: - en base_model: - mistralai/Mistral-7B-Instruct-v0.3 --- model_name: "Mistral-7B-Math (LoRA Adapters Only)" \ repo: "samzheng/mistral-7b-math-lora"\ description: This repo contains only the LoRA adapter weights (~200 MB) trained for grade-school symbolic math. Load them on top of the 4-bit base model to save disk and download time. quick_start: from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel base_id = "unsloth/mistral-7b-instruct-v0.3-bnb-4bit" lora_id = "yourusername/mistral-7b-math-lora" tok = AutoTokenizer.from_pretrained(base_id) base = AutoModelForCausalLM.from_pretrained(base_id, load_in_4bit=True, device_map="auto") model = PeftModel.from_pretrained(base, lora_id) # inject adapters # generate prompt = "... Alpaca-formatted prompt ..." out = model.generate(**tok(prompt, return_tensors="pt").to(model.device), max_new_tokens=256) print(tok.decode(out[0], skip_special_tokens=True))