Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
|
| 4 |
+
# Load a small but good text generation model
|
| 5 |
+
# You can swap "gpt2" with a better free model like "tiiuae/falcon-7b-instruct" if you have GPU
|
| 6 |
+
generator = pipeline("text-generation", model="gpt2", device_map="auto")
|
| 7 |
+
|
| 8 |
+
def decode_dream(dream_text):
|
| 9 |
+
prompt = f"You are a dream interpretation expert. Decode the following dream:\n\n{dream_text}\n\nDream meaning:"
|
| 10 |
+
result = generator(prompt, max_length=200, num_return_sequences=1, temperature=0.8)
|
| 11 |
+
return result[0]['generated_text']
|
| 12 |
+
|
| 13 |
+
demo = gr.Interface(
|
| 14 |
+
fn=decode_dream,
|
| 15 |
+
inputs=gr.Textbox(label="Describe your dream", placeholder="I was flying over a city at night..."),
|
| 16 |
+
outputs=gr.Textbox(label="Dream interpretation"),
|
| 17 |
+
title="Dream Decoder",
|
| 18 |
+
description="Describe your dream and get an AI-generated interpretation."
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
if __name__ == "__main__":
|
| 22 |
+
demo.launch()
|