End of training
Browse files- README.md +379 -198
- config.json +69 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,201 +1,382 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
-
|
34 |
-
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
tags:
|
3 |
+
- vision
|
4 |
+
- image-segmentation
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: segformer-b3-from-scratch-final
|
8 |
+
results: []
|
9 |
---
|
10 |
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# segformer-b3-from-scratch-final
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on the samitizerxu/kelp_data_rgbagg_swin_nir_int_cleaned dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Iou Kelp: 0.0073
|
19 |
+
- Loss: 0.9864
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.001
|
39 |
+
- train_batch_size: 8
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: cosine
|
44 |
+
- num_epochs: 60
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Iou Kelp | Validation Loss |
|
49 |
+
|:-------------:|:-----:|:-----:|:--------:|:---------------:|
|
50 |
+
| 0.9993 | 0.18 | 100 | 0.0069 | 0.9867 |
|
51 |
+
| 0.9945 | 0.37 | 200 | 0.0076 | 0.9855 |
|
52 |
+
| 0.9991 | 0.55 | 300 | 0.0069 | 0.9867 |
|
53 |
+
| 0.999 | 0.74 | 400 | 0.0066 | 0.9870 |
|
54 |
+
| 0.9959 | 0.92 | 500 | 0.0071 | 0.9864 |
|
55 |
+
| 0.9965 | 1.11 | 600 | 0.0066 | 0.9871 |
|
56 |
+
| 0.9764 | 1.29 | 700 | 0.0066 | 0.9871 |
|
57 |
+
| 0.9951 | 1.48 | 800 | 0.0066 | 0.9871 |
|
58 |
+
| 0.9999 | 1.66 | 900 | 0.0066 | 0.9870 |
|
59 |
+
| 0.9878 | 1.85 | 1000 | 0.0066 | 0.9871 |
|
60 |
+
| 0.9978 | 2.03 | 1100 | 0.0066 | 0.9871 |
|
61 |
+
| 0.975 | 2.21 | 1200 | 0.0069 | 0.9868 |
|
62 |
+
| 0.9957 | 2.4 | 1300 | 0.0073 | 0.9859 |
|
63 |
+
| 0.9914 | 2.58 | 1400 | 0.0079 | 0.9860 |
|
64 |
+
| 0.9928 | 2.77 | 1500 | 0.0074 | 0.9859 |
|
65 |
+
| 0.9994 | 2.95 | 1600 | 0.0004 | 0.9863 |
|
66 |
+
| 0.995 | 3.14 | 1700 | 0.0101 | 0.9860 |
|
67 |
+
| 0.9963 | 3.32 | 1800 | 0.0 | 0.9872 |
|
68 |
+
| 0.9972 | 3.51 | 1900 | 0.0074 | 0.9858 |
|
69 |
+
| 0.9959 | 3.69 | 2000 | 0.0076 | 0.9859 |
|
70 |
+
| 0.9941 | 3.87 | 2100 | 0.0073 | 0.9859 |
|
71 |
+
| 0.992 | 4.06 | 2200 | 0.0002 | 0.9951 |
|
72 |
+
| 0.9903 | 4.24 | 2300 | 0.0073 | 0.9859 |
|
73 |
+
| 0.9989 | 4.43 | 2400 | 0.0066 | 0.9871 |
|
74 |
+
| 0.9999 | 4.61 | 2500 | 0.0073 | 0.9866 |
|
75 |
+
| 0.9946 | 4.8 | 2600 | 0.0073 | 0.9859 |
|
76 |
+
| 0.9959 | 4.98 | 2700 | 0.0073 | 0.9859 |
|
77 |
+
| 0.9971 | 5.17 | 2800 | 0.0079 | 0.9863 |
|
78 |
+
| 0.9949 | 5.35 | 2900 | 0.0074 | 0.9859 |
|
79 |
+
| 0.9846 | 5.54 | 3000 | 0.0073 | 0.9859 |
|
80 |
+
| 0.9941 | 5.72 | 3100 | 0.0074 | 0.9859 |
|
81 |
+
| 0.9867 | 5.9 | 3200 | 0.0074 | 0.9858 |
|
82 |
+
| 0.9857 | 6.09 | 3300 | 0.0074 | 0.9861 |
|
83 |
+
| 0.9986 | 6.27 | 3400 | 0.0074 | 0.9859 |
|
84 |
+
| 0.9927 | 6.46 | 3500 | 0.0074 | 0.9860 |
|
85 |
+
| 0.998 | 6.64 | 3600 | 0.0075 | 0.9858 |
|
86 |
+
| 0.9971 | 6.83 | 3700 | 0.0074 | 0.9859 |
|
87 |
+
| 0.9951 | 7.01 | 3800 | 0.0074 | 0.9859 |
|
88 |
+
| 0.9998 | 7.2 | 3900 | 0.0074 | 0.9861 |
|
89 |
+
| 0.995 | 7.38 | 4000 | 0.0075 | 0.9858 |
|
90 |
+
| 0.9912 | 7.56 | 4100 | 0.0072 | 0.9861 |
|
91 |
+
| 0.9995 | 7.75 | 4200 | 0.0074 | 0.9858 |
|
92 |
+
| 0.9934 | 7.93 | 4300 | 0.0074 | 0.9860 |
|
93 |
+
| 0.9885 | 8.12 | 4400 | 0.0074 | 0.9860 |
|
94 |
+
| 0.9937 | 8.3 | 4500 | 0.0075 | 0.9857 |
|
95 |
+
| 0.9954 | 8.49 | 4600 | 0.0075 | 0.9857 |
|
96 |
+
| 0.9794 | 8.67 | 4700 | 0.0074 | 0.9858 |
|
97 |
+
| 0.9967 | 8.86 | 4800 | 0.0075 | 0.9857 |
|
98 |
+
| 0.9954 | 9.04 | 4900 | 0.0074 | 0.9862 |
|
99 |
+
| 0.9966 | 9.23 | 5000 | 0.0074 | 0.9859 |
|
100 |
+
| 0.9953 | 9.41 | 5100 | 0.0074 | 0.9859 |
|
101 |
+
| 0.9961 | 9.59 | 5200 | 0.0074 | 0.9859 |
|
102 |
+
| 0.993 | 9.78 | 5300 | 0.0075 | 0.9858 |
|
103 |
+
| 0.9993 | 9.96 | 5400 | 0.0070 | 0.9870 |
|
104 |
+
| 0.995 | 10.15 | 5500 | 0.0032 | 0.9933 |
|
105 |
+
| 0.9945 | 10.33 | 5600 | 0.0061 | 0.9884 |
|
106 |
+
| 0.9738 | 10.52 | 5700 | 0.0069 | 0.9866 |
|
107 |
+
| 0.9983 | 10.7 | 5800 | 0.0067 | 0.9869 |
|
108 |
+
| 0.9975 | 10.89 | 5900 | 0.0076 | 0.9854 |
|
109 |
+
| 0.9925 | 11.07 | 6000 | 0.0086 | 0.9839 |
|
110 |
+
| 0.9821 | 11.25 | 6100 | 0.0092 | 0.9822 |
|
111 |
+
| 0.9972 | 11.44 | 6200 | 0.0107 | 0.9787 |
|
112 |
+
| 0.9802 | 11.62 | 6300 | 0.0109 | 0.9781 |
|
113 |
+
| 1.0 | 11.81 | 6400 | 0.0076 | 0.9854 |
|
114 |
+
| 0.9922 | 11.99 | 6500 | 0.0108 | 0.9793 |
|
115 |
+
| 0.9915 | 12.18 | 6600 | 0.0108 | 0.9799 |
|
116 |
+
| 0.9963 | 12.36 | 6700 | 0.0075 | 0.9857 |
|
117 |
+
| 0.9966 | 12.55 | 6800 | 0.0075 | 0.9859 |
|
118 |
+
| 0.9978 | 12.73 | 6900 | 0.0069 | 0.9870 |
|
119 |
+
| 0.9847 | 12.92 | 7000 | 0.0074 | 0.9860 |
|
120 |
+
| 0.9972 | 13.1 | 7100 | 0.0072 | 0.9862 |
|
121 |
+
| 0.9868 | 13.28 | 7200 | 0.0071 | 0.9865 |
|
122 |
+
| 0.9961 | 13.47 | 7300 | 0.0072 | 0.9864 |
|
123 |
+
| 0.9845 | 13.65 | 7400 | 0.0071 | 0.9865 |
|
124 |
+
| 0.9974 | 13.84 | 7500 | 0.0074 | 0.9862 |
|
125 |
+
| 0.9906 | 14.02 | 7600 | 0.0076 | 0.9847 |
|
126 |
+
| 0.9999 | 14.21 | 7700 | 0.0075 | 0.9860 |
|
127 |
+
| 0.9821 | 14.39 | 7800 | 0.0074 | 0.9860 |
|
128 |
+
| 0.9976 | 14.58 | 7900 | 0.0105 | 0.9795 |
|
129 |
+
| 0.9871 | 14.76 | 8000 | 0.0103 | 0.9803 |
|
130 |
+
| 0.991 | 14.94 | 8100 | 0.0102 | 0.9805 |
|
131 |
+
| 0.9903 | 15.13 | 8200 | 0.0104 | 0.9799 |
|
132 |
+
| 0.995 | 15.31 | 8300 | 0.0074 | 0.9861 |
|
133 |
+
| 0.9981 | 15.5 | 8400 | 0.0073 | 0.9863 |
|
134 |
+
| 0.9985 | 15.68 | 8500 | 0.0073 | 0.9863 |
|
135 |
+
| 0.9973 | 15.87 | 8600 | 0.0074 | 0.9862 |
|
136 |
+
| 0.989 | 16.05 | 8700 | 0.0073 | 0.9863 |
|
137 |
+
| 0.9938 | 16.24 | 8800 | 0.0074 | 0.9860 |
|
138 |
+
| 0.9951 | 16.42 | 8900 | 0.0106 | 0.9786 |
|
139 |
+
| 0.9921 | 16.61 | 9000 | 0.0092 | 0.9824 |
|
140 |
+
| 0.9971 | 16.79 | 9100 | 0.0083 | 0.9846 |
|
141 |
+
| 0.9846 | 16.97 | 9200 | 0.0087 | 0.9838 |
|
142 |
+
| 0.9849 | 17.16 | 9300 | 0.0095 | 0.9820 |
|
143 |
+
| 0.9851 | 17.34 | 9400 | 0.0096 | 0.9818 |
|
144 |
+
| 0.9902 | 17.53 | 9500 | 0.0099 | 0.9811 |
|
145 |
+
| 0.9889 | 17.71 | 9600 | 0.0075 | 0.9860 |
|
146 |
+
| 0.9782 | 17.9 | 9700 | 0.0075 | 0.9908 |
|
147 |
+
| 0.999 | 18.08 | 9800 | 0.0074 | 0.9862 |
|
148 |
+
| 0.9878 | 18.27 | 9900 | 0.0073 | 0.9862 |
|
149 |
+
| 0.999 | 18.45 | 10000 | 0.0074 | 0.9862 |
|
150 |
+
| 1.0 | 18.63 | 10100 | 0.0074 | 0.9861 |
|
151 |
+
| 0.9951 | 18.82 | 10200 | 0.0075 | 0.9859 |
|
152 |
+
| 0.9892 | 19.0 | 10300 | 0.0073 | 0.9861 |
|
153 |
+
| 0.9853 | 19.19 | 10400 | 0.0074 | 0.9859 |
|
154 |
+
| 0.9959 | 19.37 | 10500 | 0.0074 | 0.9859 |
|
155 |
+
| 0.9999 | 19.56 | 10600 | 0.0073 | 0.9861 |
|
156 |
+
| 0.9872 | 19.74 | 10700 | 0.0074 | 0.9859 |
|
157 |
+
| 0.9939 | 19.93 | 10800 | 0.0074 | 0.9861 |
|
158 |
+
| 0.9924 | 20.11 | 10900 | 0.0073 | 0.9862 |
|
159 |
+
| 0.9993 | 20.3 | 11000 | 0.0074 | 0.9860 |
|
160 |
+
| 0.9934 | 20.48 | 11100 | 0.0075 | 0.9858 |
|
161 |
+
| 0.9976 | 20.66 | 11200 | 0.0074 | 0.9859 |
|
162 |
+
| 0.9878 | 20.85 | 11300 | 0.0074 | 0.9859 |
|
163 |
+
| 0.9955 | 21.03 | 11400 | 0.0074 | 0.9859 |
|
164 |
+
| 0.9878 | 21.22 | 11500 | 0.0075 | 0.9859 |
|
165 |
+
| 0.999 | 21.4 | 11600 | 0.0074 | 0.9859 |
|
166 |
+
| 0.9945 | 21.59 | 11700 | 0.0074 | 0.9861 |
|
167 |
+
| 0.994 | 21.77 | 11800 | 0.0075 | 0.9859 |
|
168 |
+
| 0.9848 | 21.96 | 11900 | 0.0075 | 0.9859 |
|
169 |
+
| 0.9998 | 22.14 | 12000 | 0.0075 | 0.9859 |
|
170 |
+
| 0.9826 | 22.32 | 12100 | 0.0075 | 0.9859 |
|
171 |
+
| 0.999 | 22.51 | 12200 | 0.0074 | 0.9861 |
|
172 |
+
| 0.9941 | 22.69 | 12300 | 0.0073 | 0.9863 |
|
173 |
+
| 0.9933 | 22.88 | 12400 | 0.0074 | 0.9862 |
|
174 |
+
| 0.9935 | 23.06 | 12500 | 0.0074 | 0.9862 |
|
175 |
+
| 0.9992 | 23.25 | 12600 | 0.0073 | 0.9863 |
|
176 |
+
| 0.9943 | 23.43 | 12700 | 0.0073 | 0.9863 |
|
177 |
+
| 0.9777 | 23.62 | 12800 | 0.0075 | 0.9858 |
|
178 |
+
| 0.9977 | 23.8 | 12900 | 0.0073 | 0.9862 |
|
179 |
+
| 0.9925 | 23.99 | 13000 | 0.0074 | 0.9861 |
|
180 |
+
| 0.9866 | 24.17 | 13100 | 0.0073 | 0.9863 |
|
181 |
+
| 0.9979 | 24.35 | 13200 | 0.0073 | 0.9862 |
|
182 |
+
| 0.9819 | 24.54 | 13300 | 0.0073 | 0.9864 |
|
183 |
+
| 0.966 | 24.72 | 13400 | 0.0073 | 0.9864 |
|
184 |
+
| 0.998 | 24.91 | 13500 | 0.0073 | 0.9863 |
|
185 |
+
| 0.9969 | 25.09 | 13600 | 0.0073 | 0.9863 |
|
186 |
+
| 0.9881 | 25.28 | 13700 | 0.0073 | 0.9863 |
|
187 |
+
| 0.9701 | 25.46 | 13800 | 0.0073 | 0.9864 |
|
188 |
+
| 0.9963 | 25.65 | 13900 | 0.0073 | 0.9863 |
|
189 |
+
| 0.9885 | 25.83 | 14000 | 0.0073 | 0.9863 |
|
190 |
+
| 0.9904 | 26.01 | 14100 | 0.0073 | 0.9864 |
|
191 |
+
| 0.9976 | 26.2 | 14200 | 0.0074 | 0.9862 |
|
192 |
+
| 0.995 | 26.38 | 14300 | 0.0073 | 0.9863 |
|
193 |
+
| 0.9886 | 26.57 | 14400 | 0.0073 | 0.9864 |
|
194 |
+
| 0.9735 | 26.75 | 14500 | 0.0073 | 0.9863 |
|
195 |
+
| 0.988 | 26.94 | 14600 | 0.0073 | 0.9864 |
|
196 |
+
| 0.9854 | 27.12 | 14700 | 0.0073 | 0.9864 |
|
197 |
+
| 0.9947 | 27.31 | 14800 | 0.0073 | 0.9864 |
|
198 |
+
| 0.9944 | 27.49 | 14900 | 0.0073 | 0.9864 |
|
199 |
+
| 0.9935 | 27.68 | 15000 | 0.0073 | 0.9862 |
|
200 |
+
| 0.9887 | 27.86 | 15100 | 0.0073 | 0.9863 |
|
201 |
+
| 0.9958 | 28.04 | 15200 | 0.0073 | 0.9862 |
|
202 |
+
| 0.9994 | 28.23 | 15300 | 0.0073 | 0.9863 |
|
203 |
+
| 0.9953 | 28.41 | 15400 | 0.0073 | 0.9868 |
|
204 |
+
| 0.9798 | 28.6 | 15500 | 0.0073 | 0.9863 |
|
205 |
+
| 0.9867 | 28.78 | 15600 | 0.0073 | 0.9863 |
|
206 |
+
| 0.9903 | 28.97 | 15700 | 0.0073 | 0.9863 |
|
207 |
+
| 0.9943 | 29.15 | 15800 | 0.0073 | 0.9864 |
|
208 |
+
| 0.9725 | 29.34 | 15900 | 0.0072 | 0.9864 |
|
209 |
+
| 0.9987 | 29.52 | 16000 | 0.0073 | 0.9864 |
|
210 |
+
| 0.9871 | 29.7 | 16100 | 0.0072 | 0.9864 |
|
211 |
+
| 0.992 | 29.89 | 16200 | 0.0072 | 0.9864 |
|
212 |
+
| 0.996 | 30.07 | 16300 | 0.0073 | 0.9864 |
|
213 |
+
| 0.9998 | 30.26 | 16400 | 0.0073 | 0.9864 |
|
214 |
+
| 0.9964 | 30.44 | 16500 | 0.0074 | 0.9859 |
|
215 |
+
| 0.9992 | 30.63 | 16600 | 0.0075 | 0.9858 |
|
216 |
+
| 0.9946 | 30.81 | 16700 | 0.0074 | 0.9861 |
|
217 |
+
| 0.9911 | 31.0 | 16800 | 0.0075 | 0.9859 |
|
218 |
+
| 0.9878 | 31.18 | 16900 | 0.0075 | 0.9859 |
|
219 |
+
| 0.9826 | 31.37 | 17000 | 0.0075 | 0.9859 |
|
220 |
+
| 0.9894 | 31.55 | 17100 | 0.0075 | 0.9859 |
|
221 |
+
| 0.9887 | 31.73 | 17200 | 0.0075 | 0.9860 |
|
222 |
+
| 0.9962 | 31.92 | 17300 | 0.0073 | 0.9862 |
|
223 |
+
| 0.9937 | 32.1 | 17400 | 0.0073 | 0.9863 |
|
224 |
+
| 0.9828 | 32.29 | 17500 | 0.0073 | 0.9863 |
|
225 |
+
| 0.993 | 32.47 | 17600 | 0.0073 | 0.9864 |
|
226 |
+
| 0.9975 | 32.66 | 17700 | 0.0073 | 0.9864 |
|
227 |
+
| 0.994 | 32.84 | 17800 | 0.0073 | 0.9864 |
|
228 |
+
| 0.9894 | 33.03 | 17900 | 0.0073 | 0.9862 |
|
229 |
+
| 0.9938 | 33.21 | 18000 | 0.0073 | 0.9863 |
|
230 |
+
| 0.9711 | 33.39 | 18100 | 0.0073 | 0.9863 |
|
231 |
+
| 0.9896 | 33.58 | 18200 | 0.0073 | 0.9864 |
|
232 |
+
| 0.9907 | 33.76 | 18300 | 0.0073 | 0.9864 |
|
233 |
+
| 0.9934 | 33.95 | 18400 | 0.0073 | 0.9864 |
|
234 |
+
| 0.9723 | 34.13 | 18500 | 0.0073 | 0.9864 |
|
235 |
+
| 0.9842 | 34.32 | 18600 | 0.0073 | 0.9864 |
|
236 |
+
| 0.9955 | 34.5 | 18700 | 0.0073 | 0.9864 |
|
237 |
+
| 0.9824 | 34.69 | 18800 | 0.0073 | 0.9864 |
|
238 |
+
| 0.9949 | 34.87 | 18900 | 0.0073 | 0.9864 |
|
239 |
+
| 0.9943 | 35.06 | 19000 | 0.0073 | 0.9864 |
|
240 |
+
| 0.9992 | 35.24 | 19100 | 0.0073 | 0.9864 |
|
241 |
+
| 0.9843 | 35.42 | 19200 | 0.0073 | 0.9864 |
|
242 |
+
| 0.9785 | 35.61 | 19300 | 0.0073 | 0.9864 |
|
243 |
+
| 0.9999 | 35.79 | 19400 | 0.0073 | 0.9864 |
|
244 |
+
| 0.9727 | 35.98 | 19500 | 0.0073 | 0.9864 |
|
245 |
+
| 0.9949 | 36.16 | 19600 | 0.0073 | 0.9864 |
|
246 |
+
| 0.9949 | 36.35 | 19700 | 0.0073 | 0.9864 |
|
247 |
+
| 0.9887 | 36.53 | 19800 | 0.0073 | 0.9864 |
|
248 |
+
| 0.9736 | 36.72 | 19900 | 0.0073 | 0.9864 |
|
249 |
+
| 0.9966 | 36.9 | 20000 | 0.0073 | 0.9864 |
|
250 |
+
| 0.9984 | 37.08 | 20100 | 0.0073 | 0.9864 |
|
251 |
+
| 0.993 | 37.27 | 20200 | 0.0073 | 0.9864 |
|
252 |
+
| 0.9998 | 37.45 | 20300 | 0.0073 | 0.9864 |
|
253 |
+
| 0.9972 | 37.64 | 20400 | 0.0073 | 0.9864 |
|
254 |
+
| 0.986 | 37.82 | 20500 | 0.0073 | 0.9864 |
|
255 |
+
| 0.9914 | 38.01 | 20600 | 0.0073 | 0.9864 |
|
256 |
+
| 0.9954 | 38.19 | 20700 | 0.0073 | 0.9864 |
|
257 |
+
| 0.9764 | 38.38 | 20800 | 0.0073 | 0.9864 |
|
258 |
+
| 0.9953 | 38.56 | 20900 | 0.0073 | 0.9864 |
|
259 |
+
| 0.9837 | 38.75 | 21000 | 0.0073 | 0.9864 |
|
260 |
+
| 0.9665 | 38.93 | 21100 | 0.0073 | 0.9864 |
|
261 |
+
| 0.9964 | 39.11 | 21200 | 0.0073 | 0.9864 |
|
262 |
+
| 0.9935 | 39.3 | 21300 | 0.0073 | 0.9864 |
|
263 |
+
| 0.9466 | 39.48 | 21400 | 0.0073 | 0.9864 |
|
264 |
+
| 0.9853 | 39.67 | 21500 | 0.0073 | 0.9864 |
|
265 |
+
| 0.9678 | 39.85 | 21600 | 0.0073 | 0.9864 |
|
266 |
+
| 0.995 | 40.04 | 21700 | 0.0073 | 0.9864 |
|
267 |
+
| 0.9987 | 40.22 | 21800 | 0.0073 | 0.9864 |
|
268 |
+
| 0.9935 | 40.41 | 21900 | 0.0073 | 0.9864 |
|
269 |
+
| 0.991 | 40.59 | 22000 | 0.0073 | 0.9864 |
|
270 |
+
| 0.999 | 40.77 | 22100 | 0.0073 | 0.9864 |
|
271 |
+
| 0.9985 | 40.96 | 22200 | 0.0073 | 0.9864 |
|
272 |
+
| 0.9954 | 41.14 | 22300 | 0.0073 | 0.9864 |
|
273 |
+
| 0.9894 | 41.33 | 22400 | 0.0073 | 0.9864 |
|
274 |
+
| 0.9851 | 41.51 | 22500 | 0.0073 | 0.9864 |
|
275 |
+
| 0.9882 | 41.7 | 22600 | 0.0073 | 0.9864 |
|
276 |
+
| 0.9999 | 41.88 | 22700 | 0.0073 | 0.9864 |
|
277 |
+
| 0.9901 | 42.07 | 22800 | 0.0073 | 0.9864 |
|
278 |
+
| 0.9853 | 42.25 | 22900 | 0.0073 | 0.9864 |
|
279 |
+
| 0.9868 | 42.44 | 23000 | 0.0073 | 0.9864 |
|
280 |
+
| 0.9973 | 42.62 | 23100 | 0.0073 | 0.9864 |
|
281 |
+
| 0.9979 | 42.8 | 23200 | 0.0073 | 0.9865 |
|
282 |
+
| 0.9867 | 42.99 | 23300 | 0.0073 | 0.9864 |
|
283 |
+
| 0.9994 | 43.17 | 23400 | 0.0073 | 0.9864 |
|
284 |
+
| 0.9984 | 43.36 | 23500 | 0.0073 | 0.9865 |
|
285 |
+
| 0.9974 | 43.54 | 23600 | 0.0073 | 0.9865 |
|
286 |
+
| 0.9999 | 43.73 | 23700 | 0.0073 | 0.9864 |
|
287 |
+
| 0.9669 | 43.91 | 23800 | 0.0073 | 0.9864 |
|
288 |
+
| 0.9925 | 44.1 | 23900 | 0.0073 | 0.9864 |
|
289 |
+
| 0.9961 | 44.28 | 24000 | 0.0073 | 0.9864 |
|
290 |
+
| 0.9815 | 44.46 | 24100 | 0.0073 | 0.9864 |
|
291 |
+
| 0.9968 | 44.65 | 24200 | 0.0073 | 0.9864 |
|
292 |
+
| 0.9964 | 44.83 | 24300 | 0.0073 | 0.9864 |
|
293 |
+
| 0.9929 | 45.02 | 24400 | 0.0073 | 0.9864 |
|
294 |
+
| 0.9712 | 45.2 | 24500 | 0.0073 | 0.9864 |
|
295 |
+
| 0.9884 | 45.39 | 24600 | 0.0073 | 0.9864 |
|
296 |
+
| 0.9897 | 45.57 | 24700 | 0.0073 | 0.9864 |
|
297 |
+
| 0.9862 | 45.76 | 24800 | 0.0073 | 0.9865 |
|
298 |
+
| 0.9768 | 45.94 | 24900 | 0.0073 | 0.9865 |
|
299 |
+
| 0.9965 | 46.13 | 25000 | 0.0073 | 0.9865 |
|
300 |
+
| 0.9996 | 46.31 | 25100 | 0.0073 | 0.9864 |
|
301 |
+
| 0.9887 | 46.49 | 25200 | 0.0073 | 0.9864 |
|
302 |
+
| 0.9991 | 46.68 | 25300 | 0.0073 | 0.9864 |
|
303 |
+
| 0.984 | 46.86 | 25400 | 0.0073 | 0.9864 |
|
304 |
+
| 0.983 | 47.05 | 25500 | 0.0073 | 0.9864 |
|
305 |
+
| 0.9997 | 47.23 | 25600 | 0.0073 | 0.9864 |
|
306 |
+
| 0.9923 | 47.42 | 25700 | 0.0073 | 0.9865 |
|
307 |
+
| 0.9962 | 47.6 | 25800 | 0.0073 | 0.9864 |
|
308 |
+
| 0.9747 | 47.79 | 25900 | 0.0073 | 0.9864 |
|
309 |
+
| 0.9981 | 47.97 | 26000 | 0.0073 | 0.9864 |
|
310 |
+
| 0.9936 | 48.15 | 26100 | 0.0073 | 0.9864 |
|
311 |
+
| 0.9976 | 48.34 | 26200 | 0.0073 | 0.9864 |
|
312 |
+
| 0.9601 | 48.52 | 26300 | 0.0073 | 0.9865 |
|
313 |
+
| 0.9881 | 48.71 | 26400 | 0.0073 | 0.9864 |
|
314 |
+
| 0.9919 | 48.89 | 26500 | 0.0073 | 0.9864 |
|
315 |
+
| 0.9748 | 49.08 | 26600 | 0.0073 | 0.9864 |
|
316 |
+
| 0.9862 | 49.26 | 26700 | 0.0073 | 0.9864 |
|
317 |
+
| 0.9935 | 49.45 | 26800 | 0.0073 | 0.9864 |
|
318 |
+
| 0.9402 | 49.63 | 26900 | 0.0073 | 0.9864 |
|
319 |
+
| 0.9982 | 49.82 | 27000 | 0.0073 | 0.9864 |
|
320 |
+
| 0.9619 | 50.0 | 27100 | 0.0073 | 0.9864 |
|
321 |
+
| 0.9935 | 50.18 | 27200 | 0.0073 | 0.9864 |
|
322 |
+
| 0.9962 | 50.37 | 27300 | 0.0073 | 0.9864 |
|
323 |
+
| 0.9888 | 50.55 | 27400 | 0.0073 | 0.9864 |
|
324 |
+
| 0.9956 | 50.74 | 27500 | 0.0073 | 0.9864 |
|
325 |
+
| 0.9981 | 50.92 | 27600 | 0.0073 | 0.9864 |
|
326 |
+
| 0.9992 | 51.11 | 27700 | 0.0073 | 0.9865 |
|
327 |
+
| 0.9613 | 51.29 | 27800 | 0.0073 | 0.9864 |
|
328 |
+
| 0.9721 | 51.48 | 27900 | 0.0072 | 0.9865 |
|
329 |
+
| 0.9938 | 51.66 | 28000 | 0.0073 | 0.9865 |
|
330 |
+
| 0.9998 | 51.85 | 28100 | 0.0073 | 0.9864 |
|
331 |
+
| 0.9981 | 52.03 | 28200 | 0.0073 | 0.9864 |
|
332 |
+
| 0.9793 | 52.21 | 28300 | 0.0073 | 0.9864 |
|
333 |
+
| 0.9962 | 52.4 | 28400 | 0.0073 | 0.9864 |
|
334 |
+
| 0.9728 | 52.58 | 28500 | 0.0073 | 0.9864 |
|
335 |
+
| 0.9965 | 52.77 | 28600 | 0.0073 | 0.9864 |
|
336 |
+
| 0.9937 | 52.95 | 28700 | 0.0073 | 0.9864 |
|
337 |
+
| 0.9942 | 53.14 | 28800 | 0.0073 | 0.9864 |
|
338 |
+
| 0.9902 | 53.32 | 28900 | 0.0073 | 0.9864 |
|
339 |
+
| 0.9992 | 53.51 | 29000 | 0.0073 | 0.9864 |
|
340 |
+
| 0.9954 | 53.69 | 29100 | 0.0073 | 0.9864 |
|
341 |
+
| 0.991 | 53.87 | 29200 | 0.0073 | 0.9864 |
|
342 |
+
| 0.9955 | 54.06 | 29300 | 0.0073 | 0.9864 |
|
343 |
+
| 0.9978 | 54.24 | 29400 | 0.0073 | 0.9864 |
|
344 |
+
| 0.9998 | 54.43 | 29500 | 0.0073 | 0.9864 |
|
345 |
+
| 0.9716 | 54.61 | 29600 | 0.0073 | 0.9864 |
|
346 |
+
| 0.9891 | 54.8 | 29700 | 0.0073 | 0.9864 |
|
347 |
+
| 0.9984 | 54.98 | 29800 | 0.0073 | 0.9864 |
|
348 |
+
| 0.9756 | 55.17 | 29900 | 0.0073 | 0.9864 |
|
349 |
+
| 0.9901 | 55.35 | 30000 | 0.0073 | 0.9864 |
|
350 |
+
| 0.9866 | 55.54 | 30100 | 0.0073 | 0.9864 |
|
351 |
+
| 0.9908 | 55.72 | 30200 | 0.0073 | 0.9864 |
|
352 |
+
| 0.977 | 55.9 | 30300 | 0.0073 | 0.9864 |
|
353 |
+
| 0.9882 | 56.09 | 30400 | 0.0073 | 0.9864 |
|
354 |
+
| 0.9903 | 56.27 | 30500 | 0.0073 | 0.9864 |
|
355 |
+
| 0.9819 | 56.46 | 30600 | 0.0073 | 0.9864 |
|
356 |
+
| 0.9883 | 56.64 | 30700 | 0.0073 | 0.9864 |
|
357 |
+
| 0.9922 | 56.83 | 30800 | 0.0073 | 0.9864 |
|
358 |
+
| 0.9788 | 57.01 | 30900 | 0.0073 | 0.9864 |
|
359 |
+
| 0.9756 | 57.2 | 31000 | 0.0073 | 0.9864 |
|
360 |
+
| 0.9955 | 57.38 | 31100 | 0.0073 | 0.9864 |
|
361 |
+
| 0.9925 | 57.56 | 31200 | 0.0073 | 0.9864 |
|
362 |
+
| 0.9976 | 57.75 | 31300 | 0.0073 | 0.9864 |
|
363 |
+
| 0.9938 | 57.93 | 31400 | 0.0073 | 0.9864 |
|
364 |
+
| 0.9905 | 58.12 | 31500 | 0.0073 | 0.9864 |
|
365 |
+
| 0.9819 | 58.3 | 31600 | 0.0073 | 0.9864 |
|
366 |
+
| 0.9827 | 58.49 | 31700 | 0.0073 | 0.9864 |
|
367 |
+
| 0.9927 | 58.67 | 31800 | 0.0073 | 0.9864 |
|
368 |
+
| 0.9953 | 58.86 | 31900 | 0.0073 | 0.9864 |
|
369 |
+
| 0.9937 | 59.04 | 32000 | 0.0073 | 0.9864 |
|
370 |
+
| 0.9961 | 59.23 | 32100 | 0.0073 | 0.9864 |
|
371 |
+
| 0.9886 | 59.41 | 32200 | 0.0073 | 0.9864 |
|
372 |
+
| 0.9906 | 59.59 | 32300 | 0.0073 | 0.9864 |
|
373 |
+
| 0.9811 | 59.78 | 32400 | 0.0073 | 0.9864 |
|
374 |
+
| 0.9977 | 59.96 | 32500 | 0.0073 | 0.9864 |
|
375 |
+
|
376 |
+
|
377 |
+
### Framework versions
|
378 |
+
|
379 |
+
- Transformers 4.37.2
|
380 |
+
- Pytorch 2.2.0
|
381 |
+
- Datasets 2.17.0
|
382 |
+
- Tokenizers 0.15.1
|
config.json
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"SegformerForKelpSemanticSegmentation"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.0,
|
6 |
+
"classifier_dropout_prob": 0.1,
|
7 |
+
"decoder_hidden_size": 768,
|
8 |
+
"depths": [
|
9 |
+
3,
|
10 |
+
4,
|
11 |
+
18,
|
12 |
+
3
|
13 |
+
],
|
14 |
+
"downsampling_rates": [
|
15 |
+
1,
|
16 |
+
4,
|
17 |
+
8,
|
18 |
+
16
|
19 |
+
],
|
20 |
+
"drop_path_rate": 0.1,
|
21 |
+
"hidden_act": "gelu",
|
22 |
+
"hidden_dropout_prob": 0.0,
|
23 |
+
"hidden_sizes": [
|
24 |
+
64,
|
25 |
+
128,
|
26 |
+
320,
|
27 |
+
512
|
28 |
+
],
|
29 |
+
"image_size": 350,
|
30 |
+
"initializer_range": 0.02,
|
31 |
+
"layer_norm_eps": 1e-06,
|
32 |
+
"mlp_ratios": [
|
33 |
+
4,
|
34 |
+
4,
|
35 |
+
4,
|
36 |
+
4
|
37 |
+
],
|
38 |
+
"model_type": "segformer",
|
39 |
+
"num_attention_heads": [
|
40 |
+
1,
|
41 |
+
2,
|
42 |
+
5,
|
43 |
+
8
|
44 |
+
],
|
45 |
+
"num_channels": 3,
|
46 |
+
"num_encoder_blocks": 4,
|
47 |
+
"patch_sizes": [
|
48 |
+
7,
|
49 |
+
3,
|
50 |
+
3,
|
51 |
+
3
|
52 |
+
],
|
53 |
+
"reshape_last_stage": true,
|
54 |
+
"semantic_loss_ignore_index": 255,
|
55 |
+
"sr_ratios": [
|
56 |
+
8,
|
57 |
+
4,
|
58 |
+
2,
|
59 |
+
1
|
60 |
+
],
|
61 |
+
"strides": [
|
62 |
+
4,
|
63 |
+
2,
|
64 |
+
2,
|
65 |
+
2
|
66 |
+
],
|
67 |
+
"torch_dtype": "float32",
|
68 |
+
"transformers_version": "4.37.2"
|
69 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:17f4566f0da415ff0cf94ba17f9706141f55a93439ffd69c0fcd6931016c9dd2
|
3 |
+
size 188979776
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69a917c0cc2ae291ee13fa0079b0ffd10f59e9b2505f4a6d9b0c7363c6c99e89
|
3 |
+
size 4792
|