---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Your service is bad
- text: Your products are not good
- text: What is the capital of France?
- text: Bye
- text: order email
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2
---
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 11 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-----------------------------------------------------------------------------------------------------------------------------------|
| 6 |
- 'Why did my payment fail?'
- 'Why is my payment not processing?'
- 'What are common payment issues?'
|
| 0 | - 'Your products are not good'
- 'Your service is bad'
|
| 8 | - 'Good Bye'
- 'Take care'
- 'Bye'
|
| 9 | |
| 10 | - '23234dfdff'
- 'abc'
- 'djfnknf'
|
| 4 | - 'My order ref is '
- 'Order Ref is C-123-P'
- 'Order id is C-123-P'
|
| 5 | - 'How can I track my order?'
- 'When will my order arrive?'
- "I didn't receive my COD points"
|
| 7 | - 'What is your refund policy?'
- 'How can I get a refund?'
|
| 3 | - 'order email'
- 'resend order email'
- 'I didnt receive my order email'
|
| 2 | |
| 1 | |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Bye")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 1 | 3.4737 | 6 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 2 |
| 1 | 3 |
| 2 | 1 |
| 3 | 3 |
| 4 | 5 |
| 5 | 7 |
| 6 | 3 |
| 7 | 2 |
| 8 | 3 |
| 9 | 1 |
| 10 | 8 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (5, 5)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0105 | 1 | 0.3591 | - |
| 0.5263 | 50 | 0.1235 | - |
| 1.0526 | 100 | 0.0233 | - |
| 1.5789 | 150 | 0.0057 | - |
| 2.1053 | 200 | 0.0032 | - |
| 2.6316 | 250 | 0.0025 | - |
| 3.1579 | 300 | 0.002 | - |
| 3.6842 | 350 | 0.0017 | - |
| 4.2105 | 400 | 0.0019 | - |
| 4.7368 | 450 | 0.0016 | - |
### Framework Versions
- Python: 3.10.13
- SetFit: 1.1.1
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```