--- tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 model-index: - name: resnet_weather_model results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.6735537190082644 - name: F1 type: f1 value: 0.6654635943888922 --- # resnet_weather_model This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.7452 - Accuracy: 0.6736 - F1: 0.6655 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 2.3598 | 1.0 | 91 | 2.1983 | 0.5165 | 0.5146 | | 2.0319 | 2.0 | 182 | 1.8708 | 0.6446 | 0.6433 | | 1.7971 | 3.0 | 273 | 1.7452 | 0.6736 | 0.6655 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2