salil-malhotra
commited on
Commit
·
195032c
1
Parent(s):
19c3de8
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +93 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -177.81 +/- 74.02
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x0000018E4350F430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x0000018E4350F4C0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x0000018E4350F550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x0000018E4350F5E0>", "_build": "<function ActorCriticPolicy._build at 0x0000018E4350F670>", "forward": "<function ActorCriticPolicy.forward at 0x0000018E4350F700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x0000018E4350F790>", "_predict": "<function ActorCriticPolicy._predict at 0x0000018E4350F820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x0000018E4350F8B0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x0000018E4350F940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x0000018E4350F9D0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x0000018E4350CE70>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 65536, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652130427.816553, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVkQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGFDOlxVc2Vyc1xtYWxoc2FsXGRldlxkYmNvbmRhLTIwMjFfMDUtcHkzOC1yMzZcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI1Onb3W8tE/OE5qvPytvb3HV/O+CinBvgAAAAAAAAAAmgOKPSztmj96CCs+k5vtvooa0z0ow1U+AAAAAAAAAABzk+09d/GnP+i6hz4Pbeq+uKD0PcmcND4AAAAAAAAAAN3ZMj+IOMg+zO+cPmP6vL/iro8/GRGQPAAAAAAAAAAAM8KfPXEkwz+Wpc8+DF+tPQTdhDz+iQQ9AAAAAAAAAAC2Jma+z5JvPyATMb+A22O/7GYFPv1Grb0AAAAAAAAAAACg0zsGp7U/qEZdPnWoxD1nxxe8cLZVvQAAAAAAAAAAzXHWvXlROz+ekK2+kEtBv9yz0z5gZEM+AAAAAAAAAAAzQoC8bvuyPxYeSr/ddY6+JciVPOzxOz4AAAAAAAAAAO0LGr6l+w0+IJfWPhoGeL8uV/C+wtJ+PQAAAAAAAAAAM+YGvsR3ij8todm+cGEjvzBJjj5YRLg9AAAAAAAAAAAzFje+KMxRP6Bb0L5aKFa/PtHNvc11Lb4AAAAAAAAAAMDhzb1KWpI/TkcXvyqAUL9ms7c9Dt3zPAAAAAAAAAAAAC6BPF1hxz9FCtk9er2XPriJPryiCny7AAAAAAAAAADWRJ++u5OsP6V15L5VVKK+t/WkvkZjZ74AAAAAAAAAAPO/2z5kdl4+WMICP2POb79eBZs882nAugAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+3lTkQqFasCUhpRSlIwBbJRLg4wBdJRHQDxHOW0JF9d1fZQoaAZoCWgPQwhl4etrXdZRwJSGlFKUaBVLSWgWR0A8S9Zid8RddX2UKGgGaAloD0MIDhZO0vwhNcCUhpRSlGgVS2doFkdAPEzgZTAFgXV9lChoBmgJaA9DCIeMR6mEHFvAlIaUUpRoFUs/aBZHQDxa/5+H8CR1fZQoaAZoCWgPQwjDnKBNDjtHwJSGlFKUaBVLfGgWR0A8YjBEa2nbdX2UKGgGaAloD0MIx/DYz+I5YcCUhpRSlGgVS1hoFkdAPGZVbRneznV9lChoBmgJaA9DCCXpmsk38l/AlIaUUpRoFUtFaBZHQDxtAiV0Lc91fZQoaAZoCWgPQwgCnx9GiMRgwJSGlFKUaBVLYWgWR0A8cq0tyxRmdX2UKGgGaAloD0MIp1g1CHN8XsCUhpRSlGgVS11oFkdAPHR5kbxVhnV9lChoBmgJaA9DCJrtCn2wuEjAlIaUUpRoFUtGaBZHQDx6qYJE6T51fZQoaAZoCWgPQwi29GiqJ4JcwJSGlFKUaBVLUmgWR0A8fNlyzXz2dX2UKGgGaAloD0MIy7p/LESUWMCUhpRSlGgVS4toFkdAPIMpw0fozXV9lChoBmgJaA9DCAosgCkDA2PAlIaUUpRoFUtuaBZHQDyEtYjjaPF1fZQoaAZoCWgPQwiNKsO4G4BYwJSGlFKUaBVLZ2gWR0A8h8Yht+CsdX2UKGgGaAloD0MIiBHCo40TWsCUhpRSlGgVS2poFkdAPI41LrX18XV9lChoBmgJaA9DCG4YBcHjrl/AlIaUUpRoFUthaBZHQDyNL7Gecx11fZQoaAZoCWgPQwhJaMu5FBVWwJSGlFKUaBVLdGgWR0A8lzVtoBaLdX2UKGgGaAloD0MIo+ar5GNXSsCUhpRSlGgVS4xoFkdAPJ09t/FzdXV9lChoBmgJaA9DCJrv4CcOrFHAlIaUUpRoFUtGaBZHQDygcjqv/zd1fZQoaAZoCWgPQwid19glKsJhwJSGlFKUaBVLZ2gWR0A8pZpBX0XhdX2UKGgGaAloD0MIhnKiXQVCY8CUhpRSlGgVS4poFkdAPLRF3IMjNnV9lChoBmgJaA9DCGQfZFkwQV3AlIaUUpRoFUtbaBZHQDy6butwJgN1fZQoaAZoCWgPQwg/jubIyhlbwJSGlFKUaBVLdWgWR0A8u7iQ1aW5dX2UKGgGaAloD0MIoUyjycWtW8CUhpRSlGgVS2hoFkdAPMJrLyMDOnV9lChoBmgJaA9DCHo1QGmocV3AlIaUUpRoFUtXaBZHQDzByT6i0v51fZQoaAZoCWgPQwjUDKmieCdSwJSGlFKUaBVLT2gWR0A8xYPGyX2NdX2UKGgGaAloD0MIUyEeiZctXcCUhpRSlGgVS3xoFkdAPMUEPlMh5nV9lChoBmgJaA9DCPYINUOqjFrAlIaUUpRoFUtxaBZHQDzSIJqqOtJ1fZQoaAZoCWgPQwjcn4uGjOpVwJSGlFKUaBVLZ2gWR0A80uivgWJrdX2UKGgGaAloD0MI+u/Ba5ekUcCUhpRSlGgVS0xoFkdAPNujua4MF3V9lChoBmgJaA9DCGHij6LOjFbAlIaUUpRoFUtWaBZHQDzdkqc3EQ51fZQoaAZoCWgPQwjeWbvtQi8ywJSGlFKUaBVLaWgWR0A83O3lS0jUdX2UKGgGaAloD0MIFOy/zk1BU8CUhpRSlGgVS1loFkdAPOf3rUsnRnV9lChoBmgJaA9DCG6jAbyFumDAlIaUUpRoFUtraBZHQDzm8274BWB1fZQoaAZoCWgPQwiI8gUtJOAIwJSGlFKUaBVLe2gWR0A86sySFGoadX2UKGgGaAloD0MI4EvhQbO1UcCUhpRSlGgVS4loFkdAPOsQEpy6tnV9lChoBmgJaA9DCI/GoX4XKVnAlIaUUpRoFUtXaBZHQDzx/WlMyrR1fZQoaAZoCWgPQwgy422l1+hbwJSGlFKUaBVLR2gWR0A89lf7aZhKdX2UKGgGaAloD0MI7RFqhlT8VcCUhpRSlGgVS1doFkdAPPeg+QlrunV9lChoBmgJaA9DCHjQ7Lq3RlDAlIaUUpRoFUtMaBZHQDz1tEXtSht1fZQoaAZoCWgPQwi0If/MII5cwJSGlFKUaBVLTmgWR0A8+OxjawljdX2UKGgGaAloD0MIi98UViqCVMCUhpRSlGgVS0BoFkdAPP3JYDDCQHV9lChoBmgJaA9DCByygXSx3FTAlIaUUpRoFUtIaBZHQD0DMhX8wYd1fZQoaAZoCWgPQwhRL/g0J01bwJSGlFKUaBVLcWgWR0A9CVyFPBSDdX2UKGgGaAloD0MI2CrB4nCRZsCUhpRSlGgVS0poFkdAPQxwuM+/xnV9lChoBmgJaA9DCLMmFviKZVjAlIaUUpRoFUtvaBZHQD0Phjvuw5h1fZQoaAZoCWgPQwhMN4lBYGJawJSGlFKUaBVLSmgWR0A9GUqQRwqBdX2UKGgGaAloD0MI3smnxzYSZMCUhpRSlGgVS09oFkdAPRzmjj7yhHV9lChoBmgJaA9DCBk6dlCJT03AlIaUUpRoFUteaBZHQD0dJ+UhV2l1fZQoaAZoCWgPQwjGMv0S8SFSwJSGlFKUaBVLT2gWR0A9IL61stTUdX2UKGgGaAloD0MIZFjFG5kZTMCUhpRSlGgVS0JoFkdAPSXgLqlgt3V9lChoBmgJaA9DCOvIkc5ARGPAlIaUUpRoFUtyaBZHQD0qpAD7qIJ1fZQoaAZoCWgPQwi4O2u3XT5SwJSGlFKUaBVLRGgWR0A9Lp5u63AmdX2UKGgGaAloD0MIcCamC7FuU8CUhpRSlGgVSzhoFkdAPTilWOp84XV9lChoBmgJaA9DCJbnwd1ZClXAlIaUUpRoFUttaBZHQD04qTbFjut1fZQoaAZoCWgPQwhpyHiUSsxVwJSGlFKUaBVLPmgWR0A9OrRjSXt0dX2UKGgGaAloD0MIF2GKcmnlW8CUhpRSlGgVS25oFkdAPUGlMyrPt3V9lChoBmgJaA9DCJEm3gEeHG/AlIaUUpRoFUtuaBZHQD1GADq4YrJ1fZQoaAZoCWgPQwhyxcVRuStdwJSGlFKUaBVLb2gWR0A9SoJAt4A0dX2UKGgGaAloD0MI8piByvjbYMCUhpRSlGgVS2FoFkdAPU4+B6KLsXV9lChoBmgJaA9DCCl2NA71HlTAlIaUUpRoFUuFaBZHQD1kXtShrWR1fZQoaAZoCWgPQwifq63YX6xhwJSGlFKUaBVLYWgWR0A9biEQGwA3dX2UKGgGaAloD0MIqOFbWDcHU8CUhpRSlGgVS05oFkdAPXKiCaqjrXV9lChoBmgJaA9DCDwSL0/n5WDAlIaUUpRoFUteaBZHQD1vbEgntv51fZQoaAZoCWgPQwjI7Cx6p5FbwJSGlFKUaBVLaGgWR0A9eXQMQVbidX2UKGgGaAloD0MIg2xZvi7SVMCUhpRSlGgVS2VoFkdAPYLzPKMefnV9lChoBmgJaA9DCIrkK4GU2VHAlIaUUpRoFUtTaBZHQD2IWgvlEJB1fZQoaAZoCWgPQwik4CnkSh9NwJSGlFKUaBVLSGgWR0A9i7QLNOdodX2UKGgGaAloD0MIzNJOzeUCTcCUhpRSlGgVS3loFkdAPZHfdhy8z3V9lChoBmgJaA9DCJVHN8KiqEPAlIaUUpRoFUufaBZHQD2ZVPva11J1fZQoaAZoCWgPQwge4EkLl/1EwJSGlFKUaBVLSmgWR0A9l6iTMaCMdX2UKGgGaAloD0MIPUM4ZtmMbMCUhpRSlGgVS2JoFkdAPZxpg1FYuHV9lChoBmgJaA9DCHHMsicBWGfAlIaUUpRoFUtoaBZHQD2vbEgntv51fZQoaAZoCWgPQwhU5uYb0e1bwJSGlFKUaBVLX2gWR0A9r26TW5H3dX2UKGgGaAloD0MIUG9GzVfFT8CUhpRSlGgVS0poFkdAPa9v4ubqhXV9lChoBmgJaA9DCL0A++jUe2TAlIaUUpRoFUuCaBZHQD22o73fygB1fZQoaAZoCWgPQwj1RxgGLD9FwJSGlFKUaBVLSmgWR0A9vS88La24dX2UKGgGaAloD0MIBvTCnQuxacCUhpRSlGgVS5NoFkdAPbwEQoTfznV9lChoBmgJaA9DCG+5+rFJ+lPAlIaUUpRoFUtOaBZHQD28i0OVgQZ1fZQoaAZoCWgPQwhXQndJnNBVwJSGlFKUaBVLSGgWR0A9vtuUD+zddX2UKGgGaAloD0MI9Bd6xOhnVMCUhpRSlGgVSzxoFkdAPcIxk/bCanV9lChoBmgJaA9DCPTBMjZ0VljAlIaUUpRoFUtFaBZHQD3Im7aqS5l1fZQoaAZoCWgPQwh/Tdaoh9lUwJSGlFKUaBVLYGgWR0A9yBk7OmiydX2UKGgGaAloD0MIqG4u/rayUsCUhpRSlGgVS1JoFkdAPdAQQL/jsHV9lChoBmgJaA9DCN1Dwvf+e1zAlIaUUpRoFUtJaBZHQD3Wfra/RE51fZQoaAZoCWgPQwicwkoFFSZbwJSGlFKUaBVLTGgWR0A91+fRNRFadX2UKGgGaAloD0MI+WabG9NzUcCUhpRSlGgVS0hoFkdAPdoW+GoJiXV9lChoBmgJaA9DCLH8+bbgWm7AlIaUUpRoFUtoaBZHQD3pQWN3np11fZQoaAZoCWgPQwiASSpTzGFUwJSGlFKUaBVLRmgWR0A97zrNW2gGdX2UKGgGaAloD0MI3UHsTKETX8CUhpRSlGgVS05oFkdAPfhYeT3Zf3V9lChoBmgJaA9DCBvWVBaFXdk/lIaUUpRoFUteaBZHQD36ALApKBd1fZQoaAZoCWgPQwioj8AffoBYwJSGlFKUaBVLXmgWR0A99/XGwRoRdX2UKGgGaAloD0MIdv7tsl/0VsCUhpRSlGgVS1FoFkdAPfm/N7jT8nV9lChoBmgJaA9DCJHu5xTk+lvAlIaUUpRoFUtQaBZHQD36SDAaef91fZQoaAZoCWgPQwjY8sr1titXwJSGlFKUaBVLRmgWR0A9/iSJTER8dX2UKGgGaAloD0MIvt798V6OVsCUhpRSlGgVS01oFkdAPgiwOe8PF3V9lChoBmgJaA9DCE6AYfnzw1TAlIaUUpRoFUtzaBZHQD4G5qdpZfV1fZQoaAZoCWgPQwjnHafoSFRhwJSGlFKUaBVLYWgWR0A+BuanaWX1dX2UKGgGaAloD0MI1CgkmdWcVcCUhpRSlGgVS09oFkdAPhVJYkmhNHV9lChoBmgJaA9DCGR2Fr1TaU3AlIaUUpRoFUtUaBZHQD4UxqO938p1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVkQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGFDOlxVc2Vyc1xtYWxoc2FsXGRldlxkYmNvbmRhLTIwMjFfMDUtcHkzOC1yMzZcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "target_kl": null, "system_info": {"OS": "Windows-10-10.0.18362-SP0 10.0.18362", "Python": "3.8.8", "Stable-Baselines3": "1.4.0", "PyTorch": "1.11.0", "GPU Enabled": "False", "Numpy": "1.20.1", "Gym": "0.19.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f0dbe517e8883c19b6ccfd9d3d2c5778aeed03e2e0a465d06607a48d3aad7b2
|
3 |
+
size 143367
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.4.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x0000018E4350F430>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x0000018E4350F4C0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x0000018E4350F550>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x0000018E4350F5E0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x0000018E4350F670>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x0000018E4350F700>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x0000018E4350F790>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x0000018E4350F820>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x0000018E4350F8B0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x0000018E4350F940>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x0000018E4350F9D0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x0000018E4350CE70>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
26 |
+
"dtype": "float32",
|
27 |
+
"shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
39 |
+
"n": 4,
|
40 |
+
"shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 65536,
|
46 |
+
"_total_timesteps": 50000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652130427.816553,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVkQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGFDOlxVc2Vyc1xtYWxoc2FsXGRldlxkYmNvbmRhLTIwMjFfMDUtcHkzOC1yMzZcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI1Onb3W8tE/OE5qvPytvb3HV/O+CinBvgAAAAAAAAAAmgOKPSztmj96CCs+k5vtvooa0z0ow1U+AAAAAAAAAABzk+09d/GnP+i6hz4Pbeq+uKD0PcmcND4AAAAAAAAAAN3ZMj+IOMg+zO+cPmP6vL/iro8/GRGQPAAAAAAAAAAAM8KfPXEkwz+Wpc8+DF+tPQTdhDz+iQQ9AAAAAAAAAAC2Jma+z5JvPyATMb+A22O/7GYFPv1Grb0AAAAAAAAAAACg0zsGp7U/qEZdPnWoxD1nxxe8cLZVvQAAAAAAAAAAzXHWvXlROz+ekK2+kEtBv9yz0z5gZEM+AAAAAAAAAAAzQoC8bvuyPxYeSr/ddY6+JciVPOzxOz4AAAAAAAAAAO0LGr6l+w0+IJfWPhoGeL8uV/C+wtJ+PQAAAAAAAAAAM+YGvsR3ij8todm+cGEjvzBJjj5YRLg9AAAAAAAAAAAzFje+KMxRP6Bb0L5aKFa/PtHNvc11Lb4AAAAAAAAAAMDhzb1KWpI/TkcXvyqAUL9ms7c9Dt3zPAAAAAAAAAAAAC6BPF1hxz9FCtk9er2XPriJPryiCny7AAAAAAAAAADWRJ++u5OsP6V15L5VVKK+t/WkvkZjZ74AAAAAAAAAAPO/2z5kdl4+WMICP2POb79eBZs882nAugAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.3107200000000001,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+3lTkQqFasCUhpRSlIwBbJRLg4wBdJRHQDxHOW0JF9d1fZQoaAZoCWgPQwhl4etrXdZRwJSGlFKUaBVLSWgWR0A8S9Zid8RddX2UKGgGaAloD0MIDhZO0vwhNcCUhpRSlGgVS2doFkdAPEzgZTAFgXV9lChoBmgJaA9DCIeMR6mEHFvAlIaUUpRoFUs/aBZHQDxa/5+H8CR1fZQoaAZoCWgPQwjDnKBNDjtHwJSGlFKUaBVLfGgWR0A8YjBEa2nbdX2UKGgGaAloD0MIx/DYz+I5YcCUhpRSlGgVS1hoFkdAPGZVbRneznV9lChoBmgJaA9DCCXpmsk38l/AlIaUUpRoFUtFaBZHQDxtAiV0Lc91fZQoaAZoCWgPQwgCnx9GiMRgwJSGlFKUaBVLYWgWR0A8cq0tyxRmdX2UKGgGaAloD0MIp1g1CHN8XsCUhpRSlGgVS11oFkdAPHR5kbxVhnV9lChoBmgJaA9DCJrtCn2wuEjAlIaUUpRoFUtGaBZHQDx6qYJE6T51fZQoaAZoCWgPQwi29GiqJ4JcwJSGlFKUaBVLUmgWR0A8fNlyzXz2dX2UKGgGaAloD0MIy7p/LESUWMCUhpRSlGgVS4toFkdAPIMpw0fozXV9lChoBmgJaA9DCAosgCkDA2PAlIaUUpRoFUtuaBZHQDyEtYjjaPF1fZQoaAZoCWgPQwiNKsO4G4BYwJSGlFKUaBVLZ2gWR0A8h8Yht+CsdX2UKGgGaAloD0MIiBHCo40TWsCUhpRSlGgVS2poFkdAPI41LrX18XV9lChoBmgJaA9DCG4YBcHjrl/AlIaUUpRoFUthaBZHQDyNL7Gecx11fZQoaAZoCWgPQwhJaMu5FBVWwJSGlFKUaBVLdGgWR0A8lzVtoBaLdX2UKGgGaAloD0MIo+ar5GNXSsCUhpRSlGgVS4xoFkdAPJ09t/FzdXV9lChoBmgJaA9DCJrv4CcOrFHAlIaUUpRoFUtGaBZHQDygcjqv/zd1fZQoaAZoCWgPQwid19glKsJhwJSGlFKUaBVLZ2gWR0A8pZpBX0XhdX2UKGgGaAloD0MIhnKiXQVCY8CUhpRSlGgVS4poFkdAPLRF3IMjNnV9lChoBmgJaA9DCGQfZFkwQV3AlIaUUpRoFUtbaBZHQDy6butwJgN1fZQoaAZoCWgPQwg/jubIyhlbwJSGlFKUaBVLdWgWR0A8u7iQ1aW5dX2UKGgGaAloD0MIoUyjycWtW8CUhpRSlGgVS2hoFkdAPMJrLyMDOnV9lChoBmgJaA9DCHo1QGmocV3AlIaUUpRoFUtXaBZHQDzByT6i0v51fZQoaAZoCWgPQwjUDKmieCdSwJSGlFKUaBVLT2gWR0A8xYPGyX2NdX2UKGgGaAloD0MIUyEeiZctXcCUhpRSlGgVS3xoFkdAPMUEPlMh5nV9lChoBmgJaA9DCPYINUOqjFrAlIaUUpRoFUtxaBZHQDzSIJqqOtJ1fZQoaAZoCWgPQwjcn4uGjOpVwJSGlFKUaBVLZ2gWR0A80uivgWJrdX2UKGgGaAloD0MI+u/Ba5ekUcCUhpRSlGgVS0xoFkdAPNujua4MF3V9lChoBmgJaA9DCGHij6LOjFbAlIaUUpRoFUtWaBZHQDzdkqc3EQ51fZQoaAZoCWgPQwjeWbvtQi8ywJSGlFKUaBVLaWgWR0A83O3lS0jUdX2UKGgGaAloD0MIFOy/zk1BU8CUhpRSlGgVS1loFkdAPOf3rUsnRnV9lChoBmgJaA9DCG6jAbyFumDAlIaUUpRoFUtraBZHQDzm8274BWB1fZQoaAZoCWgPQwiI8gUtJOAIwJSGlFKUaBVLe2gWR0A86sySFGoadX2UKGgGaAloD0MI4EvhQbO1UcCUhpRSlGgVS4loFkdAPOsQEpy6tnV9lChoBmgJaA9DCI/GoX4XKVnAlIaUUpRoFUtXaBZHQDzx/WlMyrR1fZQoaAZoCWgPQwgy422l1+hbwJSGlFKUaBVLR2gWR0A89lf7aZhKdX2UKGgGaAloD0MI7RFqhlT8VcCUhpRSlGgVS1doFkdAPPeg+QlrunV9lChoBmgJaA9DCHjQ7Lq3RlDAlIaUUpRoFUtMaBZHQDz1tEXtSht1fZQoaAZoCWgPQwi0If/MII5cwJSGlFKUaBVLTmgWR0A8+OxjawljdX2UKGgGaAloD0MIi98UViqCVMCUhpRSlGgVS0BoFkdAPP3JYDDCQHV9lChoBmgJaA9DCByygXSx3FTAlIaUUpRoFUtIaBZHQD0DMhX8wYd1fZQoaAZoCWgPQwhRL/g0J01bwJSGlFKUaBVLcWgWR0A9CVyFPBSDdX2UKGgGaAloD0MI2CrB4nCRZsCUhpRSlGgVS0poFkdAPQxwuM+/xnV9lChoBmgJaA9DCLMmFviKZVjAlIaUUpRoFUtvaBZHQD0Phjvuw5h1fZQoaAZoCWgPQwhMN4lBYGJawJSGlFKUaBVLSmgWR0A9GUqQRwqBdX2UKGgGaAloD0MI3smnxzYSZMCUhpRSlGgVS09oFkdAPRzmjj7yhHV9lChoBmgJaA9DCBk6dlCJT03AlIaUUpRoFUteaBZHQD0dJ+UhV2l1fZQoaAZoCWgPQwjGMv0S8SFSwJSGlFKUaBVLT2gWR0A9IL61stTUdX2UKGgGaAloD0MIZFjFG5kZTMCUhpRSlGgVS0JoFkdAPSXgLqlgt3V9lChoBmgJaA9DCOvIkc5ARGPAlIaUUpRoFUtyaBZHQD0qpAD7qIJ1fZQoaAZoCWgPQwi4O2u3XT5SwJSGlFKUaBVLRGgWR0A9Lp5u63AmdX2UKGgGaAloD0MIcCamC7FuU8CUhpRSlGgVSzhoFkdAPTilWOp84XV9lChoBmgJaA9DCJbnwd1ZClXAlIaUUpRoFUttaBZHQD04qTbFjut1fZQoaAZoCWgPQwhpyHiUSsxVwJSGlFKUaBVLPmgWR0A9OrRjSXt0dX2UKGgGaAloD0MIF2GKcmnlW8CUhpRSlGgVS25oFkdAPUGlMyrPt3V9lChoBmgJaA9DCJEm3gEeHG/AlIaUUpRoFUtuaBZHQD1GADq4YrJ1fZQoaAZoCWgPQwhyxcVRuStdwJSGlFKUaBVLb2gWR0A9SoJAt4A0dX2UKGgGaAloD0MI8piByvjbYMCUhpRSlGgVS2FoFkdAPU4+B6KLsXV9lChoBmgJaA9DCCl2NA71HlTAlIaUUpRoFUuFaBZHQD1kXtShrWR1fZQoaAZoCWgPQwifq63YX6xhwJSGlFKUaBVLYWgWR0A9biEQGwA3dX2UKGgGaAloD0MIqOFbWDcHU8CUhpRSlGgVS05oFkdAPXKiCaqjrXV9lChoBmgJaA9DCDwSL0/n5WDAlIaUUpRoFUteaBZHQD1vbEgntv51fZQoaAZoCWgPQwjI7Cx6p5FbwJSGlFKUaBVLaGgWR0A9eXQMQVbidX2UKGgGaAloD0MIg2xZvi7SVMCUhpRSlGgVS2VoFkdAPYLzPKMefnV9lChoBmgJaA9DCIrkK4GU2VHAlIaUUpRoFUtTaBZHQD2IWgvlEJB1fZQoaAZoCWgPQwik4CnkSh9NwJSGlFKUaBVLSGgWR0A9i7QLNOdodX2UKGgGaAloD0MIzNJOzeUCTcCUhpRSlGgVS3loFkdAPZHfdhy8z3V9lChoBmgJaA9DCJVHN8KiqEPAlIaUUpRoFUufaBZHQD2ZVPva11J1fZQoaAZoCWgPQwge4EkLl/1EwJSGlFKUaBVLSmgWR0A9l6iTMaCMdX2UKGgGaAloD0MIPUM4ZtmMbMCUhpRSlGgVS2JoFkdAPZxpg1FYuHV9lChoBmgJaA9DCHHMsicBWGfAlIaUUpRoFUtoaBZHQD2vbEgntv51fZQoaAZoCWgPQwhU5uYb0e1bwJSGlFKUaBVLX2gWR0A9r26TW5H3dX2UKGgGaAloD0MIUG9GzVfFT8CUhpRSlGgVS0poFkdAPa9v4ubqhXV9lChoBmgJaA9DCL0A++jUe2TAlIaUUpRoFUuCaBZHQD22o73fygB1fZQoaAZoCWgPQwj1RxgGLD9FwJSGlFKUaBVLSmgWR0A9vS88La24dX2UKGgGaAloD0MIBvTCnQuxacCUhpRSlGgVS5NoFkdAPbwEQoTfznV9lChoBmgJaA9DCG+5+rFJ+lPAlIaUUpRoFUtOaBZHQD28i0OVgQZ1fZQoaAZoCWgPQwhXQndJnNBVwJSGlFKUaBVLSGgWR0A9vtuUD+zddX2UKGgGaAloD0MI9Bd6xOhnVMCUhpRSlGgVSzxoFkdAPcIxk/bCanV9lChoBmgJaA9DCPTBMjZ0VljAlIaUUpRoFUtFaBZHQD3Im7aqS5l1fZQoaAZoCWgPQwh/Tdaoh9lUwJSGlFKUaBVLYGgWR0A9yBk7OmiydX2UKGgGaAloD0MIqG4u/rayUsCUhpRSlGgVS1JoFkdAPdAQQL/jsHV9lChoBmgJaA9DCN1Dwvf+e1zAlIaUUpRoFUtJaBZHQD3Wfra/RE51fZQoaAZoCWgPQwicwkoFFSZbwJSGlFKUaBVLTGgWR0A91+fRNRFadX2UKGgGaAloD0MI+WabG9NzUcCUhpRSlGgVS0hoFkdAPdoW+GoJiXV9lChoBmgJaA9DCLH8+bbgWm7AlIaUUpRoFUtoaBZHQD3pQWN3np11fZQoaAZoCWgPQwiASSpTzGFUwJSGlFKUaBVLRmgWR0A97zrNW2gGdX2UKGgGaAloD0MI3UHsTKETX8CUhpRSlGgVS05oFkdAPfhYeT3Zf3V9lChoBmgJaA9DCBvWVBaFXdk/lIaUUpRoFUteaBZHQD36ALApKBd1fZQoaAZoCWgPQwioj8AffoBYwJSGlFKUaBVLXmgWR0A99/XGwRoRdX2UKGgGaAloD0MIdv7tsl/0VsCUhpRSlGgVS1FoFkdAPfm/N7jT8nV9lChoBmgJaA9DCJHu5xTk+lvAlIaUUpRoFUtQaBZHQD36SDAaef91fZQoaAZoCWgPQwjY8sr1titXwJSGlFKUaBVLRmgWR0A9/iSJTER8dX2UKGgGaAloD0MIvt798V6OVsCUhpRSlGgVS01oFkdAPgiwOe8PF3V9lChoBmgJaA9DCE6AYfnzw1TAlIaUUpRoFUtzaBZHQD4G5qdpZfV1fZQoaAZoCWgPQwjnHafoSFRhwJSGlFKUaBVLYWgWR0A+BuanaWX1dX2UKGgGaAloD0MI1CgkmdWcVcCUhpRSlGgVS09oFkdAPhVJYkmhNHV9lChoBmgJaA9DCGR2Fr1TaU3AlIaUUpRoFUtUaBZHQD4UxqO938p1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 16,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 32,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVkQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGFDOlxVc2Vyc1xtYWxoc2FsXGRldlxkYmNvbmRhLTIwMjFfMDUtcHkzOC1yMzZcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"target_kl": null
|
93 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c89fb055dfa61b3fd29bb40d1fef99043062b238a138225c5c6d3007332b512a
|
3 |
+
size 84573
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52df072272e7d3cf56106b5868eeb9376ec8e0c23f6bfec3408add5504ef1665
|
3 |
+
size 43073
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Windows-10-10.0.18362-SP0 10.0.18362
|
2 |
+
Python: 3.8.8
|
3 |
+
Stable-Baselines3: 1.4.0
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.20.1
|
7 |
+
Gym: 0.19.0
|
replay.mp4
ADDED
File without changes
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -177.81430069937088, "std_reward": 74.02300502589296, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T17:08:25.731468"}
|