File size: 14,693 Bytes
6c32590
 
f1122be
 
 
 
 
 
6c32590
 
f1122be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c32590
717241c
 
 
 
6c32590
f1122be
bf7a46e
f1122be
 
 
 
707918e
f1122be
 
 
 
 
 
6c32590
32db593
f1122be
 
 
6c32590
 
f1122be
 
6c32590
f1122be
 
 
 
 
 
 
 
 
 
 
 
 
 
6c32590
 
f1122be
 
 
6c32590
f1122be
 
 
 
6c32590
f1122be
 
 
 
6c32590
f1122be
6c32590
f1122be
6c32590
f1122be
 
6c32590
bf7a46e
f1122be
6c32590
f1122be
 
6c32590
f1122be
 
 
 
 
 
 
6c32590
f1122be
 
6c32590
f1122be
 
6c32590
f1122be
 
6c32590
f1122be
 
 
6c32590
32db593
ef67a08
 
 
c198cca
 
ef67a08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32db593
ef67a08
 
32db593
ef67a08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1122be
6c32590
f1122be
 
 
 
 
 
a9b3eed
ac2e2c8
 
 
6c32590
f1122be
6c32590
f1122be
6c32590
 
f1122be
6c32590
f1122be
6c32590
 
f1122be
6c32590
f1122be
6c32590
 
f1122be
6c32590
f1122be
6c32590
f1122be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20a7233
f1122be
 
 
 
 
 
 
 
 
f56474f
f1122be
 
 
 
6c32590
 
f1122be
 
 
 
 
6c32590
 
 
f1122be
6c32590
 
 
f1122be
6c32590
f1122be
 
 
 
 
 
6c32590
f1122be
6c32590
f1122be
6c32590
f1122be
 
 
 
 
 
 
 
 
6c32590
f1122be
6c32590
f1122be
8c8d58a
f1122be
6c32590
 
f1122be
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
---
library_name: transformers
license: apache-2.0
language:
- en
base_model:
- HuggingFaceTB/SmolLM2-360M
pipeline_tag: text-to-speech
---

# YarnGPT
![image/png](https://huggingface.co/saheedniyi/YarnGPT/resolve/main/audio/logo.webp)

## Table of Contents

1. [Model Summary](#model-summary)  
2. [Model Description](#model-description)  
3. [Bias, Risks, and Limitations](#bias-risks-and-limitations)  
   - [Recommendations](#recommendations)  
4. [Speech Samples](#speech-samples)  
5. [Training](#training)  
6. [Future Improvements](#future-improvements)  
7. [Citation](#citation)  
8. [Credits & References](#credits--references)

## Model Summary

YarnGPT is a text-to-speech (TTS) model designed to synthesize Nigerian-accented English leveraging pure language modelling without external adapters or complex architectures, offering high-quality, natural, and culturally relevant speech synthesis for diverse applications.

<video controls width="600">
  <source src="https://huggingface.co/saheedniyi/YarnGPT/resolve/main/audio/YearnGPT.mp4" type="video/mp4">
  Your browser does not support the video tag.
</video>

#### How to use (Colab)
The model can generate audio on its own but its better to use a voice to prompt the model, there are about 11 voices supported by default (6 males and 5 females ):
- zainab
- jude
- tayo
- remi
- idera (default and best voice)
- regina
- chinenye
- umar
- osagie
- joke
- emma (the names do not correlate to any tribe or accent)

### Prompt YarnGPT
```python
# clone the YarnGPT repo to get access to the `audiotokenizer`
!git clone https://github.com/saheedniyi02/yarngpt.git


# install some necessary libraries
!pip install outetts==0.2.3 uroman

#import some important packages 
import os
import re
import json
import torch
import inflect
import random
import uroman as ur
import numpy as np
import torchaudio
import IPython
from transformers import AutoModelForCausalLM, AutoTokenizer
from outetts.wav_tokenizer.decoder import WavTokenizer
from yarngpt.audiotokenizer import AudioTokenizer


# download the wavtokenizer weights and config (to encode and decode the audio)
!wget https://huggingface.co/novateur/WavTokenizer-medium-speech-75token/resolve/main/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml
!wget https://huggingface.co/novateur/WavTokenizer-large-speech-75token/resolve/main/wavtokenizer_large_speech_320_24k.ckpt

# model path and wavtokenizer weight path (the paths are assumed based on Google colab, a different environment might save the weights to a different location).
hf_path="saheedniyi/YarnGPT"
wav_tokenizer_config_path="/content/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml"
wav_tokenizer_model_path = "/content/wavtokenizer_large_speech_320_24k.ckpt"

# create the AudioTokenizer object 
audio_tokenizer=AudioTokenizer(
    hf_path,wav_tokenizer_model_path,wav_tokenizer_config_path
)

#load the model weights

model = AutoModelForCausalLM.from_pretrained(hf_path,torch_dtype="auto").to(audio_tokenizer.device)

# your input text
text="Uhm, so, what was the inspiration behind your latest project? Like, was there a specific moment where you were like, 'Yeah, this is it!' Or, you know, did it just kind of, uh, come together naturally over time?"

# creating a prompt, when creating a prompt, there is an optional `speaker_name` parameter, the possible speakers are "idera","emma","jude","osagie","tayo","zainab","joke","regina","remi","umar","chinenye" if no speaker is selected a speaker is chosen at random 
prompt=audio_tokenizer.create_prompt(text,"idera")

# tokenize the prompt
input_ids=audio_tokenizer.tokenize_prompt(prompt)

# generate output from the model, you can tune the `.generate` parameters as you wish
output  = model.generate(
            input_ids=input_ids,
            temperature=0.1,
            repetition_penalty=1.1,
            max_length=4000,
        )

# convert the output to "audio codes"
codes=audio_tokenizer.get_codes(output)

# converts the codes to audio 
audio=audio_tokenizer.get_audio(codes)

# play the audio
IPython.display.Audio(audio,rate=24000)

# save the audio 
torchaudio.save(f"audio.wav", audio, sample_rate=24000)
```

### Simple Nigerian Accented-NewsReader
```python
!git clone https://github.com/saheedniyi02/yarngpt.git

# install some necessary libraries
!pip install outetts uroman trafilatura pydub

import os
import re
import json
import torch
import inflect
import random
import requests
import trafilatura
import inflect
import uroman as ur
import numpy as np
import torchaudio
import IPython
from pydub import AudioSegment
from pydub.effects import normalize
from transformers import AutoModelForCausalLM, AutoTokenizer
from outetts.wav_tokenizer.decoder import WavTokenizer


!wget https://huggingface.co/novateur/WavTokenizer-medium-speech-75token/resolve/main/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml
!wget https://huggingface.co/novateur/WavTokenizer-large-speech-75token/resolve/main/wavtokenizer_large_speech_320_24k.ckpt

from yarngpt.audiotokenizer import AudioTokenizer

tokenizer_path="saheedniyi/YarnGPT"
wav_tokenizer_config_path="/content/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml"
wav_tokenizer_model_path = "/content/wavtokenizer_large_speech_320_24k.ckpt"



audio_tokenizer=AudioTokenizer(
    tokenizer_path,wav_tokenizer_model_path,wav_tokenizer_config_path
       )


model = AutoModelForCausalLM.from_pretrained(tokenizer_path,torch_dtype="auto").to(audio_tokenizer.device)


def split_text_into_chunks(text, word_limit=25):
  """ 
  Function to split a long web page into reasonable chunks
  """
  sentences=[sentence.strip() for sentence in text.split('.') if sentence.strip()]
  chunks=[]
  for sentence in sentences:
    chunks.append(".")
    sentence_splitted=sentence.split(" ")
    num_words=len(sentence_splitted)
    start_index=0
    if num_words>word_limit:
      while start_index<num_words:
        end_index=min(num_words,start_index+word_limit)
        chunks.append(" ".join(sentence_splitted[start_index:start_index+word_limit]))
        start_index=end_index
    else:
      chunks.append(sentence)
  return chunks

#Extracting the content of a webpage
page=requests.get("https://punchng.com/expensive-feud-how-burna-boy-cubana-chief-priests-fight-led-to-dollar-rain/")
content=trafilatura.extract(page.text)
chunks=split_text_into_chunks(content)

#Looping over the chunks and adding creating a large `all_codes` list
all_codes=[]
for i,chunk in enumerate(chunks):
  print(i)
  print("\n")
  print(chunk)
  if chunk==".":
    #add silence for 0.25 seconds if we encounter a full stop
    all_codes.extend([453]*20)
  else:
    prompt=audio_tokenizer.create_prompt(chunk,"chinenye")
    input_ids=audio_tokenizer.tokenize_prompt(prompt)
    output  = model.generate(
            input_ids=input_ids,
            temperature=0.1,
            repetition_penalty=1.1,
            max_length=4000,
        )
    codes=audio_tokenizer.get_codes(output)
    all_codes.extend(codes)


# Converting to audio
audio=audio_tokenizer.get_audio(all_codes)
IPython.display.Audio(audio,rate=24000)
torchaudio.save(f"news1.wav", audio, sample_rate=24000)
```

## Model Description

- **Developed by:** [Saheedniyi](https://linkedin.com/in/azeez-saheed)
- **Model type:** Text-to-Speech
- **Language(s) (NLP):** English--> Nigerian Accented English
- **Finetuned from:** [HuggingFaceTB/SmolLM2-360M](https://huggingface.co/HuggingFaceTB/SmolLM2-360M)
- **Repository:** [YarnGPT Github Repository](https://github.com/saheedniyi02/yarngpt)
- **Paper:** IN PROGRESS.
- **Demo:** 1) [Prompt YarnGPT notebook](https://colab.research.google.com/drive/11zMUrfBiLa1gEflAKp8lliSOTNQ-X_nU?usp=sharing)
            2) [Simple news reader](https://colab.research.google.com/drive/1SsXV08kly1TUJVM_NFpKqQWOZ1gUZpGe?usp=sharing)
            


#### Uses

Generate Nigerian-accented English speech for experimental purposes.


#### Out-of-Scope Use

The model is not suitable for generating speech in languages other than English or other accents.


## Bias, Risks, and Limitations

The model may not capture the full diversity of Nigerian accents and could exhibit biases based on the training dataset. Also a lot of the text the model was trained on were automatically generated which could impact performance.


#### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases, and limitations of the model. Feedback and diverse training data contributions are encouraged.
## Speech Samples

Listen to samples generated by YarnGPT:

<div style="margin-top: 20px;">
<table style="width: 100%; border-collapse: collapse;">
  <thead>
    <tr>
        <th style="border: 1px solid #ddd; padding: 8px; text-align: left; width: 40%;">Input</th>
        <th style="border: 1px solid #ddd; padding: 8px; text-align: left; width: 40%;">Audio</th>
        <th style="border: 1px solid #ddd; padding: 8px; text-align: left; width: 10%;">Notes</th>
    </tr>
  </thead>
  <tbody>
    <tr>
        <td style="border: 1px solid #ddd; padding: 8px;">Hello world! I am Saheed Azeez and I am excited to announce the release of his project, I have been gathering data and learning how to build Audio-based models over the last two months, but thanks to God, I have been able to come up with something</td>
        <td style="border: 1px solid #ddd; padding: 8px;">
            <audio controls style="width: 100%;">
                <source src="https://huggingface.co/saheedniyi/YarnGPT/resolve/main/audio/Sample_1.wav" type="audio/wav">
                Your browser does not support the audio element.
            </audio>
        </td>
        <td style="border: 1px solid #ddd; padding: 8px;">(temperature=0.1, repetition_penalty=1.1), voice: idera</td>
    </tr>
    <tr>
        <td style="border: 1px solid #ddd; padding: 8px;"> Wizkid, Davido, Burna Boy perform at same event in Lagos. This event has sparked many reactions across social media, with fans and critics alike praising the artistes' performances and the rare opportunity to see the three music giants on the same stage.</td>
        <td style="border: 1px solid #ddd; padding: 8px;">
            <audio controls style="width: 100%;">
                <source src="https://huggingface.co/saheedniyi/YarnGPT/resolve/main/audio/Sample_2.wav" type="audio/wav">
                Your browser does not support the audio element.
            </audio>
        </td>
        <td style="border: 1px solid #ddd; padding: 8px;">(temperature=0.1, repetition_penalty=1.1), voice: jude</td>
    </tr>
    <tr>
        <td style="border: 1px solid #ddd; padding: 8px;">Since Nigeria became a republic in 1963, 14 individuals have served as head of state of Nigeria under different titles. The incumbent president Bola Tinubu is the nation's 16th head of state.</td>
        <td style="border: 1px solid #ddd; padding: 8px;">
            <audio controls style="width: 100%;">
                <source src="https://huggingface.co/saheedniyi/YarnGPT/resolve/main/audio/Sample_3.wav" type="audio/wav">
                Your browser does not support the audio element.
            </audio>
        </td>
        <td style="border: 1px solid #ddd; padding: 8px;">(temperature=0.1, repetition_penalty=1.1), voice: zainab, the model struggled in pronouncing ` in 1963`</td>
    </tr>
    <tr>
        <td style="border: 1px solid #ddd; padding: 8px;">I visited the President, who has shown great concern for the security of Plateau State, especially considering that just a year ago, our state was in mourning. The President’s commitment to addressing these challenges has been steadfast.</td>
        <td style="border: 1px solid #ddd; padding: 8px;">
            <audio controls style="width: 100%;">
                <source src="https://huggingface.co/saheedniyi/YarnGPT/resolve/main/audio/Sample_4.wav" type="audio/wav">
                Your browser does not support the audio element.
            </audio>
        </td>
        <td style="border: 1px solid #ddd; padding: 8px;">(temperature=0.1, repetition_penalty=1.1), voice: emma</td>
    </tr>
    <tr>
        <td style="border: 1px solid #ddd; padding: 8px;">Scientists have discovered a new planet that may be capable of supporting life!</td>
        <td style="border: 1px solid #ddd; padding: 8px;">
            <audio controls style="width: 100%;">
                <source src="https://huggingface.co/saheedniyi/YarnGPT/resolve/main/audio/Sample_5.wav" type="audio/wav">
                Your browser does not support the audio element.
            </audio>
        </td>
        <td style="border: 1px solid #ddd; padding: 8px;">(temperature=0.1, repetition_penalty=1.1)</td>
    </tr>
  </tbody>
  </table>
</div>


## Training

#### Data
Trained on a dataset of publicly available Nigerian movies, podcasts ( using the subtitle-audio pairs) and open source Nigerian-related audio data on Huggingface,

#### Preprocessing 

Audio files were preprocessed and resampled to 24Khz and tokenized using [wavtokenizer](https://huggingface.co/novateur/WavTokenizer).

#### Training Hyperparameters
- **Number of epochs:** 5
- **batch_size:** 4
- **Scheduler:** linear schedule with warmup for 4 epochs, then linear decay to zero for the last epoch
- **Optimizer:** AdamW (betas=(0.9, 0.95),weight_decay=0.01)
- **Learning rate:** 1*10^-3

#### Hardware

- **GPUs:** 1 A100 (google colab: 50 hours)

#### Software

- **Training Framework:** Pytorch

## Future Improvements?
- Scaling up model size and human-annotaed/ reviewed training data
- Wrap the model around an API endpoint 
- Add support for local Nigerian languages
- Voice cloning.
- Potential expansion into speech-to-speech assistant models

## Citation [optional]

#### BibTeX:

```python
@misc{yarngpt2025,
  author = {Saheed Azeez},
  title = {YarnGPT: Nigerian-Accented English Text-to-Speech Model},
  year = {2025},
  publisher = {Hugging Face},
  url = {https://huggingface.co/SaheedAzeez/yarngpt}
}
```

#### APA:

```python
Saheed Azeez. (2025). YarnGPT: Nigerian-Accented English Text-to-Speech Model. Hugging Face. Available at: https://huggingface.co/saheedniyi/YarnGPT
```


## Credits & References
- [OuteAI/OuteTTS-0.2-500M](https://huggingface.co/OuteAI/OuteTTS-0.2-500M/)
- [WavTokenizer](https://github.com/jishengpeng/WavTokenizer)
- [CTC Forced Alignment](https://pytorch.org/audio/stable/tutorials/ctc_forced_alignment_api_tutorial.html)
- [Voicera](https://huggingface.co/Lwasinam/voicera)