File size: 14,693 Bytes
6c32590 f1122be 6c32590 f1122be 6c32590 717241c 6c32590 f1122be bf7a46e f1122be 707918e f1122be 6c32590 32db593 f1122be 6c32590 f1122be 6c32590 f1122be 6c32590 f1122be 6c32590 f1122be 6c32590 f1122be 6c32590 f1122be 6c32590 f1122be 6c32590 f1122be 6c32590 bf7a46e f1122be 6c32590 f1122be 6c32590 f1122be 6c32590 f1122be 6c32590 f1122be 6c32590 f1122be 6c32590 f1122be 6c32590 32db593 ef67a08 c198cca ef67a08 32db593 ef67a08 32db593 ef67a08 f1122be 6c32590 f1122be a9b3eed ac2e2c8 6c32590 f1122be 6c32590 f1122be 6c32590 f1122be 6c32590 f1122be 6c32590 f1122be 6c32590 f1122be 6c32590 f1122be 6c32590 f1122be 6c32590 f1122be 20a7233 f1122be f56474f f1122be 6c32590 f1122be 6c32590 f1122be 6c32590 f1122be 6c32590 f1122be 6c32590 f1122be 6c32590 f1122be 6c32590 f1122be 6c32590 f1122be 6c32590 f1122be 8c8d58a f1122be 6c32590 f1122be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
---
library_name: transformers
license: apache-2.0
language:
- en
base_model:
- HuggingFaceTB/SmolLM2-360M
pipeline_tag: text-to-speech
---
# YarnGPT
![image/png](https://huggingface.co/saheedniyi/YarnGPT/resolve/main/audio/logo.webp)
## Table of Contents
1. [Model Summary](#model-summary)
2. [Model Description](#model-description)
3. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
- [Recommendations](#recommendations)
4. [Speech Samples](#speech-samples)
5. [Training](#training)
6. [Future Improvements](#future-improvements)
7. [Citation](#citation)
8. [Credits & References](#credits--references)
## Model Summary
YarnGPT is a text-to-speech (TTS) model designed to synthesize Nigerian-accented English leveraging pure language modelling without external adapters or complex architectures, offering high-quality, natural, and culturally relevant speech synthesis for diverse applications.
<video controls width="600">
<source src="https://huggingface.co/saheedniyi/YarnGPT/resolve/main/audio/YearnGPT.mp4" type="video/mp4">
Your browser does not support the video tag.
</video>
#### How to use (Colab)
The model can generate audio on its own but its better to use a voice to prompt the model, there are about 11 voices supported by default (6 males and 5 females ):
- zainab
- jude
- tayo
- remi
- idera (default and best voice)
- regina
- chinenye
- umar
- osagie
- joke
- emma (the names do not correlate to any tribe or accent)
### Prompt YarnGPT
```python
# clone the YarnGPT repo to get access to the `audiotokenizer`
!git clone https://github.com/saheedniyi02/yarngpt.git
# install some necessary libraries
!pip install outetts==0.2.3 uroman
#import some important packages
import os
import re
import json
import torch
import inflect
import random
import uroman as ur
import numpy as np
import torchaudio
import IPython
from transformers import AutoModelForCausalLM, AutoTokenizer
from outetts.wav_tokenizer.decoder import WavTokenizer
from yarngpt.audiotokenizer import AudioTokenizer
# download the wavtokenizer weights and config (to encode and decode the audio)
!wget https://huggingface.co/novateur/WavTokenizer-medium-speech-75token/resolve/main/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml
!wget https://huggingface.co/novateur/WavTokenizer-large-speech-75token/resolve/main/wavtokenizer_large_speech_320_24k.ckpt
# model path and wavtokenizer weight path (the paths are assumed based on Google colab, a different environment might save the weights to a different location).
hf_path="saheedniyi/YarnGPT"
wav_tokenizer_config_path="/content/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml"
wav_tokenizer_model_path = "/content/wavtokenizer_large_speech_320_24k.ckpt"
# create the AudioTokenizer object
audio_tokenizer=AudioTokenizer(
hf_path,wav_tokenizer_model_path,wav_tokenizer_config_path
)
#load the model weights
model = AutoModelForCausalLM.from_pretrained(hf_path,torch_dtype="auto").to(audio_tokenizer.device)
# your input text
text="Uhm, so, what was the inspiration behind your latest project? Like, was there a specific moment where you were like, 'Yeah, this is it!' Or, you know, did it just kind of, uh, come together naturally over time?"
# creating a prompt, when creating a prompt, there is an optional `speaker_name` parameter, the possible speakers are "idera","emma","jude","osagie","tayo","zainab","joke","regina","remi","umar","chinenye" if no speaker is selected a speaker is chosen at random
prompt=audio_tokenizer.create_prompt(text,"idera")
# tokenize the prompt
input_ids=audio_tokenizer.tokenize_prompt(prompt)
# generate output from the model, you can tune the `.generate` parameters as you wish
output = model.generate(
input_ids=input_ids,
temperature=0.1,
repetition_penalty=1.1,
max_length=4000,
)
# convert the output to "audio codes"
codes=audio_tokenizer.get_codes(output)
# converts the codes to audio
audio=audio_tokenizer.get_audio(codes)
# play the audio
IPython.display.Audio(audio,rate=24000)
# save the audio
torchaudio.save(f"audio.wav", audio, sample_rate=24000)
```
### Simple Nigerian Accented-NewsReader
```python
!git clone https://github.com/saheedniyi02/yarngpt.git
# install some necessary libraries
!pip install outetts uroman trafilatura pydub
import os
import re
import json
import torch
import inflect
import random
import requests
import trafilatura
import inflect
import uroman as ur
import numpy as np
import torchaudio
import IPython
from pydub import AudioSegment
from pydub.effects import normalize
from transformers import AutoModelForCausalLM, AutoTokenizer
from outetts.wav_tokenizer.decoder import WavTokenizer
!wget https://huggingface.co/novateur/WavTokenizer-medium-speech-75token/resolve/main/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml
!wget https://huggingface.co/novateur/WavTokenizer-large-speech-75token/resolve/main/wavtokenizer_large_speech_320_24k.ckpt
from yarngpt.audiotokenizer import AudioTokenizer
tokenizer_path="saheedniyi/YarnGPT"
wav_tokenizer_config_path="/content/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml"
wav_tokenizer_model_path = "/content/wavtokenizer_large_speech_320_24k.ckpt"
audio_tokenizer=AudioTokenizer(
tokenizer_path,wav_tokenizer_model_path,wav_tokenizer_config_path
)
model = AutoModelForCausalLM.from_pretrained(tokenizer_path,torch_dtype="auto").to(audio_tokenizer.device)
def split_text_into_chunks(text, word_limit=25):
"""
Function to split a long web page into reasonable chunks
"""
sentences=[sentence.strip() for sentence in text.split('.') if sentence.strip()]
chunks=[]
for sentence in sentences:
chunks.append(".")
sentence_splitted=sentence.split(" ")
num_words=len(sentence_splitted)
start_index=0
if num_words>word_limit:
while start_index<num_words:
end_index=min(num_words,start_index+word_limit)
chunks.append(" ".join(sentence_splitted[start_index:start_index+word_limit]))
start_index=end_index
else:
chunks.append(sentence)
return chunks
#Extracting the content of a webpage
page=requests.get("https://punchng.com/expensive-feud-how-burna-boy-cubana-chief-priests-fight-led-to-dollar-rain/")
content=trafilatura.extract(page.text)
chunks=split_text_into_chunks(content)
#Looping over the chunks and adding creating a large `all_codes` list
all_codes=[]
for i,chunk in enumerate(chunks):
print(i)
print("\n")
print(chunk)
if chunk==".":
#add silence for 0.25 seconds if we encounter a full stop
all_codes.extend([453]*20)
else:
prompt=audio_tokenizer.create_prompt(chunk,"chinenye")
input_ids=audio_tokenizer.tokenize_prompt(prompt)
output = model.generate(
input_ids=input_ids,
temperature=0.1,
repetition_penalty=1.1,
max_length=4000,
)
codes=audio_tokenizer.get_codes(output)
all_codes.extend(codes)
# Converting to audio
audio=audio_tokenizer.get_audio(all_codes)
IPython.display.Audio(audio,rate=24000)
torchaudio.save(f"news1.wav", audio, sample_rate=24000)
```
## Model Description
- **Developed by:** [Saheedniyi](https://linkedin.com/in/azeez-saheed)
- **Model type:** Text-to-Speech
- **Language(s) (NLP):** English--> Nigerian Accented English
- **Finetuned from:** [HuggingFaceTB/SmolLM2-360M](https://huggingface.co/HuggingFaceTB/SmolLM2-360M)
- **Repository:** [YarnGPT Github Repository](https://github.com/saheedniyi02/yarngpt)
- **Paper:** IN PROGRESS.
- **Demo:** 1) [Prompt YarnGPT notebook](https://colab.research.google.com/drive/11zMUrfBiLa1gEflAKp8lliSOTNQ-X_nU?usp=sharing)
2) [Simple news reader](https://colab.research.google.com/drive/1SsXV08kly1TUJVM_NFpKqQWOZ1gUZpGe?usp=sharing)
#### Uses
Generate Nigerian-accented English speech for experimental purposes.
#### Out-of-Scope Use
The model is not suitable for generating speech in languages other than English or other accents.
## Bias, Risks, and Limitations
The model may not capture the full diversity of Nigerian accents and could exhibit biases based on the training dataset. Also a lot of the text the model was trained on were automatically generated which could impact performance.
#### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases, and limitations of the model. Feedback and diverse training data contributions are encouraged.
## Speech Samples
Listen to samples generated by YarnGPT:
<div style="margin-top: 20px;">
<table style="width: 100%; border-collapse: collapse;">
<thead>
<tr>
<th style="border: 1px solid #ddd; padding: 8px; text-align: left; width: 40%;">Input</th>
<th style="border: 1px solid #ddd; padding: 8px; text-align: left; width: 40%;">Audio</th>
<th style="border: 1px solid #ddd; padding: 8px; text-align: left; width: 10%;">Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td style="border: 1px solid #ddd; padding: 8px;">Hello world! I am Saheed Azeez and I am excited to announce the release of his project, I have been gathering data and learning how to build Audio-based models over the last two months, but thanks to God, I have been able to come up with something</td>
<td style="border: 1px solid #ddd; padding: 8px;">
<audio controls style="width: 100%;">
<source src="https://huggingface.co/saheedniyi/YarnGPT/resolve/main/audio/Sample_1.wav" type="audio/wav">
Your browser does not support the audio element.
</audio>
</td>
<td style="border: 1px solid #ddd; padding: 8px;">(temperature=0.1, repetition_penalty=1.1), voice: idera</td>
</tr>
<tr>
<td style="border: 1px solid #ddd; padding: 8px;"> Wizkid, Davido, Burna Boy perform at same event in Lagos. This event has sparked many reactions across social media, with fans and critics alike praising the artistes' performances and the rare opportunity to see the three music giants on the same stage.</td>
<td style="border: 1px solid #ddd; padding: 8px;">
<audio controls style="width: 100%;">
<source src="https://huggingface.co/saheedniyi/YarnGPT/resolve/main/audio/Sample_2.wav" type="audio/wav">
Your browser does not support the audio element.
</audio>
</td>
<td style="border: 1px solid #ddd; padding: 8px;">(temperature=0.1, repetition_penalty=1.1), voice: jude</td>
</tr>
<tr>
<td style="border: 1px solid #ddd; padding: 8px;">Since Nigeria became a republic in 1963, 14 individuals have served as head of state of Nigeria under different titles. The incumbent president Bola Tinubu is the nation's 16th head of state.</td>
<td style="border: 1px solid #ddd; padding: 8px;">
<audio controls style="width: 100%;">
<source src="https://huggingface.co/saheedniyi/YarnGPT/resolve/main/audio/Sample_3.wav" type="audio/wav">
Your browser does not support the audio element.
</audio>
</td>
<td style="border: 1px solid #ddd; padding: 8px;">(temperature=0.1, repetition_penalty=1.1), voice: zainab, the model struggled in pronouncing ` in 1963`</td>
</tr>
<tr>
<td style="border: 1px solid #ddd; padding: 8px;">I visited the President, who has shown great concern for the security of Plateau State, especially considering that just a year ago, our state was in mourning. The President’s commitment to addressing these challenges has been steadfast.</td>
<td style="border: 1px solid #ddd; padding: 8px;">
<audio controls style="width: 100%;">
<source src="https://huggingface.co/saheedniyi/YarnGPT/resolve/main/audio/Sample_4.wav" type="audio/wav">
Your browser does not support the audio element.
</audio>
</td>
<td style="border: 1px solid #ddd; padding: 8px;">(temperature=0.1, repetition_penalty=1.1), voice: emma</td>
</tr>
<tr>
<td style="border: 1px solid #ddd; padding: 8px;">Scientists have discovered a new planet that may be capable of supporting life!</td>
<td style="border: 1px solid #ddd; padding: 8px;">
<audio controls style="width: 100%;">
<source src="https://huggingface.co/saheedniyi/YarnGPT/resolve/main/audio/Sample_5.wav" type="audio/wav">
Your browser does not support the audio element.
</audio>
</td>
<td style="border: 1px solid #ddd; padding: 8px;">(temperature=0.1, repetition_penalty=1.1)</td>
</tr>
</tbody>
</table>
</div>
## Training
#### Data
Trained on a dataset of publicly available Nigerian movies, podcasts ( using the subtitle-audio pairs) and open source Nigerian-related audio data on Huggingface,
#### Preprocessing
Audio files were preprocessed and resampled to 24Khz and tokenized using [wavtokenizer](https://huggingface.co/novateur/WavTokenizer).
#### Training Hyperparameters
- **Number of epochs:** 5
- **batch_size:** 4
- **Scheduler:** linear schedule with warmup for 4 epochs, then linear decay to zero for the last epoch
- **Optimizer:** AdamW (betas=(0.9, 0.95),weight_decay=0.01)
- **Learning rate:** 1*10^-3
#### Hardware
- **GPUs:** 1 A100 (google colab: 50 hours)
#### Software
- **Training Framework:** Pytorch
## Future Improvements?
- Scaling up model size and human-annotaed/ reviewed training data
- Wrap the model around an API endpoint
- Add support for local Nigerian languages
- Voice cloning.
- Potential expansion into speech-to-speech assistant models
## Citation [optional]
#### BibTeX:
```python
@misc{yarngpt2025,
author = {Saheed Azeez},
title = {YarnGPT: Nigerian-Accented English Text-to-Speech Model},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/SaheedAzeez/yarngpt}
}
```
#### APA:
```python
Saheed Azeez. (2025). YarnGPT: Nigerian-Accented English Text-to-Speech Model. Hugging Face. Available at: https://huggingface.co/saheedniyi/YarnGPT
```
## Credits & References
- [OuteAI/OuteTTS-0.2-500M](https://huggingface.co/OuteAI/OuteTTS-0.2-500M/)
- [WavTokenizer](https://github.com/jishengpeng/WavTokenizer)
- [CTC Forced Alignment](https://pytorch.org/audio/stable/tutorials/ctc_forced_alignment_api_tutorial.html)
- [Voicera](https://huggingface.co/Lwasinam/voicera) |