--- language: - en license: mit tags: - chemistry - SMILES - product datasets: - ORD metrics: - accuracy --- # Model Card for ReactionT5-product-prediction This is a ReactionT5 pre-trained to predict the products of reactions. You can use the demo [here](https://huggingface.co/spaces/sagawa/predictproduct-t5). ## Model Details ### Model Sources - **Repository:** https://github.com/sagawatatsuya/ReactionT5 - **Paper:** {{ paper | default("[More Information Needed]", true)}} - **Demo:** https://huggingface.co/spaces/sagawa/predictproduct-t5 ## Uses ## How to Get Started with the Model Download files and use the code below to get started with the model. ```python from transformers import AutoTokenizer, T5ForConditionalGeneration tokenizer = AutoTokenizer.from_pretrained('sagawa/ReactionT5-product-prediction') inp = tokenizer('REACTANT:COC(=O)C1=CCCN(C)C1.O.[Al+3].[H-].[Li+].[Na+].[OH-]REAGENT:C1CCOC1', return_tensors='pt') model = T5ForConditionalGeneration.from_pretrained('sagawa/ReactionT5-product-prediction') output = model.generate(**inp, min_length=6, max_length=109, num_beams=1, num_return_sequences=1, return_dict_in_generate=True, output_scores=True) output = tokenizer.decode(output['sequences'][0], skip_special_tokens=True).replace(' ', '').rstrip('.') output # 'O=S(=O)([O-])[O-].O=S(=O)([O-])[O-].O=S(=O)([O-])[O-].[Cr+3].[Cr+3]' ``` ## Training Details ### Training Procedure We used Open Reaction Database (ORD) dataset for model training. Following is the command used for training. For more information, please refer to the paper and GitHub repository. ```python python train.py \ --epochs=100 \ --batch_size=32 \ --data_path='../data/all_ord_reaction_uniq_with_attr_v3.csv' \ --use_reconstructed_data \ --pretrained_model_name_or_path='sagawa/CompoundT5' ``` ### Results | Model | Training set | Test set | Top-1 [% acc.] | Top-2 [% acc.] | Top-3 [% acc.] | Top-5 [% acc.] | |----------------------|---------------------------|----------|----------------|----------------|----------------|----------------| | Sequence-to-sequence | USPTO | USPTO | 80.3 | 84.7 | 86.2 | 87.5 | | WLDN | USPTO | USPTO | 80.6 (85.6) | 90.5 | 92.8 | 93.4 | | Molecular Transformer| USPTO | USPTO | 88.8 | 92.6 | – | 94.4 | | T5Chem | USPTO | USPTO | 90.4 | 94.2 | – | 96.4 | | CompoundT5 | USPTO | USPTO | 88.0 | 92.4 | 93.9 | 95.0 | | ReactionT5 | ORD | USPTO | 0.0 <85.0> | 0.0 <90.6> | 0.0 <92.3> | 0.0 <93.8> | Performance comparison of Compound T5, ReactionT5, and other models in product prediction. The values enclosed in ‘<>’ in the table represent the scores of the model that was fine-tuned on 200 reactions from the USPTO dataset. The score enclosed in ‘()’ is the one reported in the original paper. ## Citation [optional] ## Model Card Authors [optional] {{ model_card_authors | default("[More Information Needed]", true)}} ## Model Card Contact {{ model_card_contact | default("[More Information Needed]", true)}}