Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,83 @@
|
|
1 |
---
|
|
|
|
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
-
# ZINC-t5-productpredicition
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
license: mit
|
5 |
+
tags:
|
6 |
+
- chemistry
|
7 |
+
- SMILES
|
8 |
+
- product
|
9 |
+
datasets:
|
10 |
+
- ORD
|
11 |
+
metrics:
|
12 |
+
- accuracy
|
13 |
---
|
|
|
14 |
|
15 |
+
# Model Card for ReactionT5-product-prediction
|
16 |
+
|
17 |
+
This is a ReactionT5 pre-trained to predict the products of reactions. You can use the demo [here](https://huggingface.co/spaces/sagawa/predictproduct-t5).
|
18 |
+
|
19 |
+
## Model Details
|
20 |
+
|
21 |
+
<!-- Provide a longer summary of what this model is. -->
|
22 |
+
|
23 |
+
|
24 |
+
### Model Sources
|
25 |
+
|
26 |
+
<!-- Provide the basic links for the model. -->
|
27 |
+
|
28 |
+
- **Repository:** https://github.com/sagawatatsuya/ReactionT5
|
29 |
+
- **Paper:** {{ paper | default("[More Information Needed]", true)}}
|
30 |
+
- **Demo:** https://huggingface.co/spaces/sagawa/predictproduct-t5
|
31 |
+
|
32 |
+
## Uses
|
33 |
+
|
34 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
35 |
+
|
36 |
+
## How to Get Started with the Model
|
37 |
+
|
38 |
+
Download files and use the code below to get started with the model.
|
39 |
+
|
40 |
+
```python
|
41 |
+
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
42 |
+
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained('sagawa/ReactionT5-product-prediction')
|
44 |
+
inp = tokenizer('REACTANT:COC(=O)C1=CCCN(C)C1.O.[Al+3].[H-].[Li+].[Na+].[OH-]REAGENT:C1CCOC1', return_tensors='pt')
|
45 |
+
model = T5ForConditionalGeneration.from_pretrained('sagawa/ReactionT5-product-prediction')
|
46 |
+
output = model.generate(**inp, min_length=6, max_length=109, num_beams=1, num_return_sequences=1, return_dict_in_generate=True, output_scores=True)
|
47 |
+
output = tokenizer.decode(output['sequences'][0], skip_special_tokens=True).replace(' ', '').rstrip('.')
|
48 |
+
output # 'O=S(=O)([O-])[O-].O=S(=O)([O-])[O-].O=S(=O)([O-])[O-].[Cr+3].[Cr+3]'
|
49 |
+
```
|
50 |
+
|
51 |
+
## Training Details
|
52 |
+
|
53 |
+
### Training Procedure
|
54 |
+
|
55 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
56 |
+
We used Open Reaction Database (ORD) dataset for model training.
|
57 |
+
Following is the command used for training. For more information, please refer to the paper and GitHub repository.
|
58 |
+
|
59 |
+
```python
|
60 |
+
python train.py \
|
61 |
+
--epochs=100 \
|
62 |
+
--batch_size=32 \
|
63 |
+
--data_path='../data/all_ord_reaction_uniq_with_attr_v3.csv' \
|
64 |
+
--use_reconstructed_data \
|
65 |
+
--pretrained_model_name_or_path='sagawa/CompoundT5'
|
66 |
+
```
|
67 |
+
|
68 |
+
### Results
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
## Citation [optional]
|
73 |
+
|
74 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
75 |
+
|
76 |
+
|
77 |
+
## Model Card Authors [optional]
|
78 |
+
|
79 |
+
{{ model_card_authors | default("[More Information Needed]", true)}}
|
80 |
+
|
81 |
+
## Model Card Contact
|
82 |
+
|
83 |
+
{{ model_card_contact | default("[More Information Needed]", true)}}
|