File size: 2,249 Bytes
9ae9c39 6dcd90f 9ae9c39 4e26650 9ae9c39 4e26650 9ae9c39 4e26650 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
base_model: Sao10K/L3-8B-Stheno-v3.2
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
license: apache-2.0
language:
- en
- zh
---
# TigerStheno
- **Developed by:** safe049
- **License:** apache-2.0
- **Finetuned from model :** Sao10K/L3-8B-Stheno-v3.2
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
### Model Details
**Model Name:** TigerStheno-8B-V3.2
**Permalink:** [TigerStheno-8B-V3.2](https://huggingface.co/TigerResearch/TigerStheno-8B-V3.2)
**Model Description:**
TigerStheno-8B-V3.2 is an AI model based on the Sao10K/L3-8B-Stheno-v3.2 architecture, fine-tuned using the TigerBot dataset. This model is designed to enhance language understanding and generation capabilities, particularly in multi-language and multi-task role-playing scenarios.
- **Developed by:** safe049
- **Shared by:** safe049
- **Model type:** Large Language Model
- **Language(s) (NLP):** Multi-language support
- **License:** Apache 2.0
- **Finetuned from model:** Sao10K/L3-8B-Stheno-v3.2
### Uses
**Direct Use:**
The model can be directly used for various natural language processing tasks such as role-playing, text generation, summarization, translation, and dialogue systems.
### Bias, Risks
- **Bias:** TigerStheno-8B-V3.2 is uncensored and may give any response including illegal,in-moral content.
- **Risks:** May generate illegal and in-moral content
### Using it
**GGUF:**
Download the gguf file in the repo, and use it in any of these apps and etc:
- KoboldCPP
- Ollama
- LlamaCPP
etc.
**Transformer**
Here is a example code snippet to use it with transformer:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "TigerResearch/TigerStheno-8B-V3.2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example input
inputs = tokenizer("Hello, how are you?", return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0]))
``` |