--- base_model: facebook/w2v-bert-2.0 datasets: - common_voice_17_0 library_name: transformers license: mit metrics: - wer tags: - generated_from_trainer model-index: - name: w2v-bert-2.0-slovak-colab-CV17.0 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: sk split: test args: sk metrics: - type: wer value: 0.1358878674797488 name: Wer --- # w2v-bert-2.0-slovak-colab-CV17.0 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3823 - Wer: 0.1359 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 3.1601 | 1.6393 | 300 | 0.4869 | 0.2985 | | 0.2141 | 3.2787 | 600 | 0.3886 | 0.2144 | | 0.1323 | 4.9180 | 900 | 0.3180 | 0.1840 | | 0.0754 | 6.5574 | 1200 | 0.3019 | 0.1750 | | 0.0401 | 8.1967 | 1500 | 0.3717 | 0.1525 | | 0.022 | 9.8361 | 1800 | 0.3408 | 0.1503 | | 0.0083 | 11.4754 | 2100 | 0.3489 | 0.1413 | | 0.0027 | 13.1148 | 2400 | 0.3681 | 0.1358 | | 0.0011 | 14.7541 | 2700 | 0.3823 | 0.1359 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1 - Datasets 2.19.1 - Tokenizers 0.20.1