--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: w2v-bert-2.0-slovak-colab-CV17.0 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: sk split: test args: sk metrics: - name: Wer type: wer value: 0.13279330117411486 --- # w2v-bert-2.0-slovak-colab-CV17.0 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3002 - Wer: 0.1328 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 2.3467 | 1.6393 | 300 | 0.3488 | 0.2605 | | 0.1905 | 3.2787 | 600 | 0.3339 | 0.2059 | | 0.1121 | 4.9180 | 900 | 0.3009 | 0.1849 | | 0.0592 | 6.5574 | 1200 | 0.2817 | 0.1482 | | 0.0264 | 8.1967 | 1500 | 0.3114 | 0.1385 | | 0.0094 | 9.8361 | 1800 | 0.3002 | 0.1328 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1 - Datasets 2.19.1 - Tokenizers 0.20.1