etomoscow commited on
Commit
80216a3
·
verified ·
1 Parent(s): a507cf2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -157
README.md CHANGED
@@ -1,199 +1,133 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
73
 
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
 
121
  #### Metrics
122
 
123
  <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
 
 
 
 
134
 
135
- ## Model Examination [optional]
 
 
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
 
140
 
141
- ## Environmental Impact
 
 
 
 
 
 
 
 
 
 
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
 
167
  #### Software
168
 
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
 
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
  ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - detoxification
5
+ - text_style_transfer
6
+ license: mit
7
+ datasets:
8
+ - s-nlp/synthdetoxm
9
+ language:
10
+ - de
11
+ - es
12
+ - fr
13
+ - ru
14
+ base_model:
15
+ - bigscience/mt0-xl
16
+ pipeline_tag: text2text-generation
17
  ---
18
 
19
+ # mT0-XL (SynthDetoxM Full)
20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61ade264f602880813dbe10b/V-_UsUgqXy1BStg2G9SfS.png)
23
 
24
+ <!-- Provide a quick summary of what the model is/does. -->
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
+ This a fine-tune of [`bigscience/mt0-xl`](https://huggingface.co/bigscience/mt0-xl) model on multilingual text detoxification dataset [SynthDetoxM](https://huggingface.co/datasets/s-nlp/synthdetoxm) from the NAACL 2025 Main Track paper *SynthDetoxM: Modern LLMs are Few-Shot Parallel Detoxification Data Annotators* by Daniil Moskovskiy et al.
27
 
28
+ ## Usage
29
 
30
+ The usage is similar to the
31
 
32
+ ```python
33
+ from transformers import pipeline
34
 
35
+ toxic_text = "Your toxic text goes here."
36
 
37
+ pipe = pipeline("text2text-generation", model="s-nlp/mt0-xl-detox-sdm-full")
38
+ pipe(f"Detoxify: {toxic_text}")
39
 
40
+ ```
41
 
42
  ## Training Details
43
 
44
+ The model was fine-tuned for 2 epochs on [`s-nlp/synthdetoxm`](https://huggingface.co/datasets/s-nlp/synthdetoxm) dataset with full precision (FP32) using Adafactor optimizer with `1e-4` learning rate and batch size of `4` with gradient checkpointing enabled. The full training configuration is available below:
45
+
46
+ ```json
47
+ {
48
+ "do_train": true,
49
+ "do_eval": true,
50
+ "per_device_train_batch_size": 4,
51
+ "per_device_eval_batch_size": 4,
52
+ "learning_rate": 1e-4,
53
+ "weight_decay": 0,
54
+ "num_train_epochs": 2,
55
+ "gradient_accumulation_steps": 1,
56
+ "logging_strategy": "steps",
57
+ "logging_steps": 1,
58
+ "save_strategy": "epoch",
59
+ "save_total_limit": 1,
60
+ "warmup_steps": 1,
61
+ "report_to": "wandb",
62
+ "optim": "adafactor",
63
+ "lr_scheduler_type": "linear",
64
+ "predict_with_generate": true,
65
+ "bf16": false,
66
+ "gradient_checkpointing": true,
67
+ "output_dir": "/path/",
68
+ "seed": 42,
69
+ }
70
+
71
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
  #### Metrics
74
 
75
  <!-- These are the evaluation metrics being used, ideally with a description of why. -->
76
 
77
+ We use the multilingual detoxification evaluation setup from [TextDetox 2024 Multilingual Text Detoxification Shared Task](https://pan.webis.de/clef24/pan24-web/text-detoxification.html).
78
+ Specifically, we use the following metrics:
 
 
 
 
 
 
79
 
80
+ - **Style Transfer Accuracy** (**STA**) is calculated with a [`textdetox/xlmr-large-toxicity-classifier`](https://huggingface.co/textdetox/xlmr-large-toxicity-classifier).
81
+ - **Text Similarity** (**SIM**) is calculated as a similarity of text embeddings given by a [`sentence-transformers/LaBSE`](https://huggingface.co/sentence-transformers/LaBSE) encoder.
82
+ - **Fluency** (**FL**) is calculated as a character n-gram F score - [$\text{ChrF}_1$](https://github.com/m-popovic/chrF).
83
 
84
+ These metrics are aggregated in a final **Joint** metric (**J**):
85
+
86
+ $$\textbf{J} = \frac{1}{n}\sum\limits_{i=1}^{n}\textbf{STA}(y_i) \cdot \textbf{SIM}(x_i,y_i) \cdot \textbf{FL}(x_i, y_i)$$,
87
 
88
+ ### Evaluation Results
89
 
90
+ This model was evaluated on the test set of [`textdetox/multilingual_paradetox`](https://huggingface.co/datasets/textdetox/multilingual_paradetox) dataset from [TextDetox 2024 Multilingual Text Detoxification Shared Task](https://pan.webis.de/clef24/pan24-web/text-detoxification.html).
91
+ The results of the evaluation are presented below.
92
 
93
+ | | **German** | **Spanish** | **Russian** |
94
+ |----------------|------------|-------------|-------------|
95
+ | **Human References** | 0.733 | 0.709 | 0.732 |
96
+ | **Baselines** | | | |
97
+ | Duplicate | 0.287 | 0.090 | 0.048 |
98
+ | Delete | 0.362 | 0.319 | 0.255 |
99
+ | Backtranslation| 0.233 | 0.275 | 0.223 |
100
+ | **mT0-XL supervised fine-tuning** | | | |
101
+ | [MultiParaDetox](https://huggingface.co/datasets/textdetox/multilingual_paradetox) | 0.446 | 0.344 | 0.472 |
102
+ | [SynthDetoxM](https://huggingface.co/datasets/s-nlp/synthdetoxm) (Subset AVG) | 0.460 | 0.402 | 0.475 |
103
+ | [SynthDetoxM](https://huggingface.co/datasets/s-nlp/synthdetoxm) (this model) | **0.482** | **0.470** | **0.546** |
104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
 
106
  #### Software
107
 
108
+ Code for replicating the results from the paper can be found on [GitHub](https://github.com/s-nlp/synthdetoxm).
 
 
109
 
110
+ ## Citation
111
 
112
  **BibTeX:**
113
 
114
+ ```latex
115
+ @misc{moskovskiy2025synthdetoxmmodernllmsfewshot,
116
+ title={SynthDetoxM: Modern LLMs are Few-Shot Parallel Detoxification Data Annotators},
117
+ author={Daniil Moskovskiy and Nikita Sushko and Sergey Pletenev and Elena Tutubalina and Alexander Panchenko},
118
+ year={2025},
119
+ eprint={2502.06394},
120
+ archivePrefix={arXiv},
121
+ primaryClass={cs.CL},
122
+ url={https://arxiv.org/abs/2502.06394},
123
+ }
124
+ ```
 
 
125
 
 
126
 
127
  ## Model Card Authors [optional]
128
 
129
+ [Daniil Moskovskiy](https://huggingface.co/etomoscow)
130
 
131
  ## Model Card Contact
132
 
133
+ For any questions, please contact: [Daniil Moskovskiy]([email protected])