Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,133 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
|
46 |
-
|
47 |
|
48 |
-
<!--
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
|
62 |
-
[
|
63 |
|
64 |
-
|
65 |
|
66 |
-
|
67 |
|
68 |
-
|
|
|
69 |
|
70 |
-
|
71 |
|
72 |
-
|
|
|
73 |
|
74 |
-
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
|
121 |
#### Metrics
|
122 |
|
123 |
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
|
125 |
-
[
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
|
|
|
|
|
|
|
134 |
|
135 |
-
|
|
|
|
|
136 |
|
137 |
-
|
138 |
|
139 |
-
[
|
|
|
140 |
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
|
167 |
#### Software
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
|
173 |
-
|
174 |
|
175 |
**BibTeX:**
|
176 |
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
|
191 |
-
[More Information Needed]
|
192 |
|
193 |
## Model Card Authors [optional]
|
194 |
|
195 |
-
[
|
196 |
|
197 |
## Model Card Contact
|
198 |
|
199 |
-
[
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- detoxification
|
5 |
+
- text_style_transfer
|
6 |
+
license: mit
|
7 |
+
datasets:
|
8 |
+
- s-nlp/synthdetoxm
|
9 |
+
language:
|
10 |
+
- de
|
11 |
+
- es
|
12 |
+
- fr
|
13 |
+
- ru
|
14 |
+
base_model:
|
15 |
+
- bigscience/mt0-xl
|
16 |
+
pipeline_tag: text2text-generation
|
17 |
---
|
18 |
|
19 |
+
# mT0-XL (SynthDetoxM Full)
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+

|
23 |
|
24 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
This a fine-tune of [`bigscience/mt0-xl`](https://huggingface.co/bigscience/mt0-xl) model on multilingual text detoxification dataset [SynthDetoxM](https://huggingface.co/datasets/s-nlp/synthdetoxm) from the NAACL 2025 Main Track paper *SynthDetoxM: Modern LLMs are Few-Shot Parallel Detoxification Data Annotators* by Daniil Moskovskiy et al.
|
27 |
|
28 |
+
## Usage
|
29 |
|
30 |
+
The usage is similar to the
|
31 |
|
32 |
+
```python
|
33 |
+
from transformers import pipeline
|
34 |
|
35 |
+
toxic_text = "Your toxic text goes here."
|
36 |
|
37 |
+
pipe = pipeline("text2text-generation", model="s-nlp/mt0-xl-detox-sdm-full")
|
38 |
+
pipe(f"Detoxify: {toxic_text}")
|
39 |
|
40 |
+
```
|
41 |
|
42 |
## Training Details
|
43 |
|
44 |
+
The model was fine-tuned for 2 epochs on [`s-nlp/synthdetoxm`](https://huggingface.co/datasets/s-nlp/synthdetoxm) dataset with full precision (FP32) using Adafactor optimizer with `1e-4` learning rate and batch size of `4` with gradient checkpointing enabled. The full training configuration is available below:
|
45 |
+
|
46 |
+
```json
|
47 |
+
{
|
48 |
+
"do_train": true,
|
49 |
+
"do_eval": true,
|
50 |
+
"per_device_train_batch_size": 4,
|
51 |
+
"per_device_eval_batch_size": 4,
|
52 |
+
"learning_rate": 1e-4,
|
53 |
+
"weight_decay": 0,
|
54 |
+
"num_train_epochs": 2,
|
55 |
+
"gradient_accumulation_steps": 1,
|
56 |
+
"logging_strategy": "steps",
|
57 |
+
"logging_steps": 1,
|
58 |
+
"save_strategy": "epoch",
|
59 |
+
"save_total_limit": 1,
|
60 |
+
"warmup_steps": 1,
|
61 |
+
"report_to": "wandb",
|
62 |
+
"optim": "adafactor",
|
63 |
+
"lr_scheduler_type": "linear",
|
64 |
+
"predict_with_generate": true,
|
65 |
+
"bf16": false,
|
66 |
+
"gradient_checkpointing": true,
|
67 |
+
"output_dir": "/path/",
|
68 |
+
"seed": 42,
|
69 |
+
}
|
70 |
+
|
71 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
#### Metrics
|
74 |
|
75 |
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
76 |
|
77 |
+
We use the multilingual detoxification evaluation setup from [TextDetox 2024 Multilingual Text Detoxification Shared Task](https://pan.webis.de/clef24/pan24-web/text-detoxification.html).
|
78 |
+
Specifically, we use the following metrics:
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
- **Style Transfer Accuracy** (**STA**) is calculated with a [`textdetox/xlmr-large-toxicity-classifier`](https://huggingface.co/textdetox/xlmr-large-toxicity-classifier).
|
81 |
+
- **Text Similarity** (**SIM**) is calculated as a similarity of text embeddings given by a [`sentence-transformers/LaBSE`](https://huggingface.co/sentence-transformers/LaBSE) encoder.
|
82 |
+
- **Fluency** (**FL**) is calculated as a character n-gram F score - [$\text{ChrF}_1$](https://github.com/m-popovic/chrF).
|
83 |
|
84 |
+
These metrics are aggregated in a final **Joint** metric (**J**):
|
85 |
+
|
86 |
+
$$\textbf{J} = \frac{1}{n}\sum\limits_{i=1}^{n}\textbf{STA}(y_i) \cdot \textbf{SIM}(x_i,y_i) \cdot \textbf{FL}(x_i, y_i)$$,
|
87 |
|
88 |
+
### Evaluation Results
|
89 |
|
90 |
+
This model was evaluated on the test set of [`textdetox/multilingual_paradetox`](https://huggingface.co/datasets/textdetox/multilingual_paradetox) dataset from [TextDetox 2024 Multilingual Text Detoxification Shared Task](https://pan.webis.de/clef24/pan24-web/text-detoxification.html).
|
91 |
+
The results of the evaluation are presented below.
|
92 |
|
93 |
+
| | **German** | **Spanish** | **Russian** |
|
94 |
+
|----------------|------------|-------------|-------------|
|
95 |
+
| **Human References** | 0.733 | 0.709 | 0.732 |
|
96 |
+
| **Baselines** | | | |
|
97 |
+
| Duplicate | 0.287 | 0.090 | 0.048 |
|
98 |
+
| Delete | 0.362 | 0.319 | 0.255 |
|
99 |
+
| Backtranslation| 0.233 | 0.275 | 0.223 |
|
100 |
+
| **mT0-XL supervised fine-tuning** | | | |
|
101 |
+
| [MultiParaDetox](https://huggingface.co/datasets/textdetox/multilingual_paradetox) | 0.446 | 0.344 | 0.472 |
|
102 |
+
| [SynthDetoxM](https://huggingface.co/datasets/s-nlp/synthdetoxm) (Subset AVG) | 0.460 | 0.402 | 0.475 |
|
103 |
+
| [SynthDetoxM](https://huggingface.co/datasets/s-nlp/synthdetoxm) (this model) | **0.482** | **0.470** | **0.546** |
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
#### Software
|
107 |
|
108 |
+
Code for replicating the results from the paper can be found on [GitHub](https://github.com/s-nlp/synthdetoxm).
|
|
|
|
|
109 |
|
110 |
+
## Citation
|
111 |
|
112 |
**BibTeX:**
|
113 |
|
114 |
+
```latex
|
115 |
+
@misc{moskovskiy2025synthdetoxmmodernllmsfewshot,
|
116 |
+
title={SynthDetoxM: Modern LLMs are Few-Shot Parallel Detoxification Data Annotators},
|
117 |
+
author={Daniil Moskovskiy and Nikita Sushko and Sergey Pletenev and Elena Tutubalina and Alexander Panchenko},
|
118 |
+
year={2025},
|
119 |
+
eprint={2502.06394},
|
120 |
+
archivePrefix={arXiv},
|
121 |
+
primaryClass={cs.CL},
|
122 |
+
url={https://arxiv.org/abs/2502.06394},
|
123 |
+
}
|
124 |
+
```
|
|
|
|
|
125 |
|
|
|
126 |
|
127 |
## Model Card Authors [optional]
|
128 |
|
129 |
+
[Daniil Moskovskiy](https://huggingface.co/etomoscow)
|
130 |
|
131 |
## Model Card Contact
|
132 |
|
133 |
+
For any questions, please contact: [Daniil Moskovskiy]([email protected])
|