# Copyright (c) Facebook, Inc. and its affiliates. # The following API functions are defined: # AVOS - AVOS api class that loads AVIS annotation file and prepare data structures. # decodeMask - Decode binary mask M encoded via run-length encoding. # encodeMask - Encode binary mask M using run-length encoding. # getAnnIds - Get ann ids that satisfy given filter conditions. # getCatIds - Get cat ids that satisfy given filter conditions. # getImgIds - Get img ids that satisfy given filter conditions. # loadAnns - Load anns with the specified ids. # loadCats - Load cats with the specified ids. # loadImgs - Load imgs with the specified ids. # annToMask - Convert segmentation in an annotation to binary mask. # loadRes - Load algorithm results and create API for accessing them. import json import time import numpy as np import copy import itertools from pycocotools import mask as maskUtils from collections import defaultdict import sys PYTHON_VERSION = sys.version_info[0] if PYTHON_VERSION == 2: from urllib import urlretrieve elif PYTHON_VERSION == 3: from urllib.request import urlretrieve def _isArrayLike(obj): return hasattr(obj, '__iter__') and hasattr(obj, '__len__') class AVOS: def __init__(self, annotation_file=None): """ Constructor of Microsoft COCO helper class for reading and visualizing annotations. :param annotation_file (str): location of annotation file :param image_folder (str): location to the folder that hosts images. :return: """ # load dataset self.dataset,self.anns,self.cats,self.vids = dict(),dict(),dict(),dict() self.vidToAnns, self.catToVids = defaultdict(list), defaultdict(list) if not annotation_file == None: print('loading annotations into memory...') tic = time.time() dataset = json.load(open(annotation_file, 'r')) assert type(dataset)==dict, 'annotation file format {} not supported'.format(type(dataset)) print('Done (t={:0.2f}s)'.format(time.time()- tic)) self.dataset = dataset self.createIndex() def createIndex(self): # create index print('creating index...') anns, cats, vids = {}, {}, {} vidToAnns,catToVids = defaultdict(list),defaultdict(list) if 'annotations' in self.dataset: for ann in self.dataset['annotations']: vidToAnns[ann['video_id']].append(ann) anns[ann['id']] = ann if 'videos' in self.dataset: for vid in self.dataset['videos']: vids[vid['id']] = vid if 'categories' in self.dataset: for cat in self.dataset['categories']: cats[cat['id']] = cat if 'annotations' in self.dataset and 'categories' in self.dataset: for ann in self.dataset['annotations']: catToVids[ann['category_id']].append(ann['video_id']) print('index created!') # create class members self.anns = anns self.vidToAnns = vidToAnns self.catToVids = catToVids self.vids = vids self.cats = cats def info(self): """ Print information about the annotation file. :return: """ for key, value in self.dataset['info'].items(): print('{}: {}'.format(key, value)) def getAnnIds(self, vidIds=[], catIds=[], areaRng=[], iscrowd=None): """ Get ann ids that satisfy given filter conditions. default skips that filter :param vidIds (int array) : get anns for given vids catIds (int array) : get anns for given cats areaRng (float array) : get anns for given area range (e.g. [0 inf]) iscrowd (boolean) : get anns for given crowd label (False or True) :return: ids (int array) : integer array of ann ids """ vidIds = vidIds if _isArrayLike(vidIds) else [vidIds] catIds = catIds if _isArrayLike(catIds) else [catIds] if len(vidIds) == len(catIds) == len(areaRng) == 0: anns = self.dataset['annotations'] else: if not len(vidIds) == 0: lists = [self.vidToAnns[vidId] for vidId in vidIds if vidId in self.vidToAnns] anns = list(itertools.chain.from_iterable(lists)) else: anns = self.dataset['annotations'] anns = anns if len(catIds) == 0 else [ann for ann in anns if ann['category_id'] in catIds] anns = anns if len(areaRng) == 0 else [ann for ann in anns if ann['avg_area'] > areaRng[0] and ann['avg_area'] < areaRng[1]] if not iscrowd == None: ids = [ann['id'] for ann in anns if ann['iscrowd'] == iscrowd] else: ids = [ann['id'] for ann in anns] return ids def getCatIds(self, catNms=[], supNms=[], catIds=[]): """ filtering parameters. default skips that filter. :param catNms (str array) : get cats for given cat names :param supNms (str array) : get cats for given supercategory names :param catIds (int array) : get cats for given cat ids :return: ids (int array) : integer array of cat ids """ catNms = catNms if _isArrayLike(catNms) else [catNms] supNms = supNms if _isArrayLike(supNms) else [supNms] catIds = catIds if _isArrayLike(catIds) else [catIds] if len(catNms) == len(supNms) == len(catIds) == 0: cats = self.dataset['categories'] else: cats = self.dataset['categories'] cats = cats if len(catNms) == 0 else [cat for cat in cats if cat['name'] in catNms] cats = cats if len(supNms) == 0 else [cat for cat in cats if cat['supercategory'] in supNms] cats = cats if len(catIds) == 0 else [cat for cat in cats if cat['id'] in catIds] ids = [cat['id'] for cat in cats] return ids def getVidIds(self, vidIds=[], catIds=[]): ''' Get vid ids that satisfy given filter conditions. :param vidIds (int array) : get vids for given ids :param catIds (int array) : get vids with all given cats :return: ids (int array) : integer array of vid ids ''' vidIds = vidIds if _isArrayLike(vidIds) else [vidIds] catIds = catIds if _isArrayLike(catIds) else [catIds] if len(vidIds) == len(catIds) == 0: ids = self.vids.keys() else: ids = set(vidIds) for i, catId in enumerate(catIds): if i == 0 and len(ids) == 0: ids = set(self.catToVids[catId]) else: ids &= set(self.catToVids[catId]) return list(ids) def loadAnns(self, ids=[]): """ Load anns with the specified ids. :param ids (int array) : integer ids specifying anns :return: anns (object array) : loaded ann objects """ if _isArrayLike(ids): return [self.anns[id] for id in ids] elif type(ids) == int: return [self.anns[ids]] def loadCats(self, ids=[]): """ Load cats with the specified ids. :param ids (int array) : integer ids specifying cats :return: cats (object array) : loaded cat objects """ if _isArrayLike(ids): return [self.cats[id] for id in ids] elif type(ids) == int: return [self.cats[ids]] def loadVids(self, ids=[]): """ Load anns with the specified ids. :param ids (int array) : integer ids specifying vid :return: vids (object array) : loaded vid objects """ if _isArrayLike(ids): return [self.vids[id] for id in ids] elif type(ids) == int: return [self.vids[ids]] def loadRes(self, resFile): """ Load result file and return a result api object. :param resFile (str) : file name of result file :return: res (obj) : result api object """ res = AVOS() res.dataset['videos'] = [img for img in self.dataset['videos']] print('Loading and preparing results...') tic = time.time() if type(resFile) == str or (PYTHON_VERSION == 2 and type(resFile) == unicode): anns = json.load(open(resFile)) elif type(resFile) == np.ndarray: anns = self.loadNumpyAnnotations(resFile) else: anns = resFile assert type(anns) == list, 'results in not an array of objects' annsVidIds = [ann['video_id'] for ann in anns] assert set(annsVidIds) == (set(annsVidIds) & set(self.getVidIds())), \ 'Results do not correspond to current coco set' if 'segmentations' in anns[0]: res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) for id, ann in enumerate(anns): ann['areas'] = [] if not 'bboxes' in ann: ann['bboxes'] = [] for seg in ann['segmentations']: # now only support compressed RLE format as segmentation results if seg: ann['areas'].append(maskUtils.area(seg)) if len(ann['bboxes']) < len(ann['areas']): ann['bboxes'].append(maskUtils.toBbox(seg)) else: ann['areas'].append(None) if len(ann['bboxes']) < len(ann['areas']): ann['bboxes'].append(None) ann['id'] = id+1 l = [a for a in ann['areas'] if a] if len(l)==0: ann['avg_area'] = 0 else: ann['avg_area'] = np.array(l).mean() ann['iscrowd'] = 0 print('DONE (t={:0.2f}s)'.format(time.time()- tic)) res.dataset['annotations'] = anns res.createIndex() return res def annToRLE(self, ann, frameId): """ Convert annotation which can be polygons, uncompressed RLE to RLE. :return: binary mask (numpy 2D array) """ t = self.vids[ann['video_id']] h, w = t['height'], t['width'] segm = ann['segmentations'][frameId] if type(segm) == list: # polygon -- a single object might consist of multiple parts # we merge all parts into one mask rle code rles = maskUtils.frPyObjects(segm, h, w) rle = maskUtils.merge(rles) elif type(segm['counts']) == list: # uncompressed RLE rle = maskUtils.frPyObjects(segm, h, w) else: # rle rle = segm return rle def annToMask(self, ann, frameId): """ Convert annotation which can be polygons, uncompressed RLE, or RLE to binary mask. :return: binary mask (numpy 2D array) """ rle = self.annToRLE(ann, frameId) m = maskUtils.decode(rle) return m