try: # ignore ShapelyDeprecationWarning from fvcore from shapely.errors import ShapelyDeprecationWarning import warnings warnings.filterwarnings('ignore', category=ShapelyDeprecationWarning) except: pass import os os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' import copy import itertools import logging from collections import OrderedDict from typing import Any, Dict, List, Set import torch import detectron2.utils.comm as comm from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import get_cfg from detectron2.data import MetadataCatalog, build_detection_train_loader from detectron2.engine import ( DefaultTrainer, default_argument_parser, default_setup, launch, ) from detectron2.evaluation import ( DatasetEvaluator, inference_on_dataset, verify_results, ) from detectron2.projects.deeplab import add_deeplab_config, build_lr_scheduler from detectron2.solver.build import maybe_add_gradient_clipping from detectron2.utils.logger import setup_logger # MaskFormer from mask2former import add_maskformer2_config from avism import ( AVISDatasetMapper, AVISEvaluator, build_detection_train_loader, build_detection_test_loader, add_avism_config, ) class Trainer(DefaultTrainer): """ Extension of the Trainer class adapted to MaskFormer. """ @classmethod def build_evaluator(cls, cfg, dataset_name, output_folder=None): if output_folder is None: output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") os.makedirs(output_folder, exist_ok=True) return AVISEvaluator(dataset_name, cfg, False, output_folder) @classmethod def build_train_loader(cls, cfg): mapper = AVISDatasetMapper(cfg, is_train=True) return build_detection_train_loader(cfg, mapper=mapper, dataset_name=cfg.DATASETS.TRAIN[0]) @classmethod def build_test_loader(cls, cfg, dataset_name): dataset_name = cfg.DATASETS.TEST[0] mapper = AVISDatasetMapper(cfg, is_train=False) return build_detection_test_loader(cfg, dataset_name, mapper=mapper) @classmethod def build_lr_scheduler(cls, cfg, optimizer): """ It now calls :func:`detectron2.solver.build_lr_scheduler`. Overwrite it if you'd like a different scheduler. """ return build_lr_scheduler(cfg, optimizer) @classmethod def build_optimizer(cls, cfg, model): weight_decay_norm = cfg.SOLVER.WEIGHT_DECAY_NORM weight_decay_embed = cfg.SOLVER.WEIGHT_DECAY_EMBED defaults = {} defaults["lr"] = cfg.SOLVER.BASE_LR defaults["weight_decay"] = cfg.SOLVER.WEIGHT_DECAY norm_module_types = ( torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.BatchNorm3d, torch.nn.SyncBatchNorm, # NaiveSyncBatchNorm inherits from BatchNorm2d torch.nn.GroupNorm, torch.nn.InstanceNorm1d, torch.nn.InstanceNorm2d, torch.nn.InstanceNorm3d, torch.nn.LayerNorm, torch.nn.LocalResponseNorm, ) params: List[Dict[str, Any]] = [] memo: Set[torch.nn.parameter.Parameter] = set() for module_name, module in model.named_modules(): for module_param_name, value in module.named_parameters(recurse=False): if not value.requires_grad: continue # Avoid duplicating parameters if value in memo: continue memo.add(value) hyperparams = copy.copy(defaults) if "backbone" in module_name: hyperparams["lr"] = hyperparams["lr"] * cfg.SOLVER.BACKBONE_MULTIPLIER if ( "relative_position_bias_table" in module_param_name or "absolute_pos_embed" in module_param_name ): print(module_param_name) hyperparams["weight_decay"] = 0.0 if isinstance(module, norm_module_types): hyperparams["weight_decay"] = weight_decay_norm if isinstance(module, torch.nn.Embedding): hyperparams["weight_decay"] = weight_decay_embed params.append({"params": [value], **hyperparams}) def maybe_add_full_model_gradient_clipping(optim): # detectron2 doesn't have full model gradient clipping now clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE enable = ( cfg.SOLVER.CLIP_GRADIENTS.ENABLED and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model" and clip_norm_val > 0.0 ) class FullModelGradientClippingOptimizer(optim): def step(self, closure=None): all_params = itertools.chain(*[x["params"] for x in self.param_groups]) torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val) super().step(closure=closure) return FullModelGradientClippingOptimizer if enable else optim optimizer_type = cfg.SOLVER.OPTIMIZER if optimizer_type == "SGD": optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)( params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM ) elif optimizer_type == "ADAMW": optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)( params, cfg.SOLVER.BASE_LR ) else: raise NotImplementedError(f"no optimizer type {optimizer_type}") if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model": optimizer = maybe_add_gradient_clipping(cfg, optimizer) return optimizer @classmethod def test(cls, cfg, model, evaluators=None): """ Evaluate the given model. The given model is expected to already contain weights to evaluate. Args: cfg (CfgNode): model (nn.Module): evaluators (list[DatasetEvaluator] or None): if None, will call :meth:`build_evaluator`. Otherwise, must have the same length as ``cfg.DATASETS.TEST``. Returns: dict: a dict of result metrics """ if cfg["eval_only"]: from torch.cuda.amp import autocast logger = logging.getLogger(__name__) if isinstance(evaluators, DatasetEvaluator): evaluators = [evaluators] if evaluators is not None: assert len(cfg.DATASETS.TEST) == len(evaluators), "{} != {}".format( len(cfg.DATASETS.TEST), len(evaluators) ) results = OrderedDict() for idx, dataset_name in enumerate(cfg.DATASETS.TEST): data_loader = cls.build_test_loader(cfg, dataset_name) # When evaluators are passed in as arguments, # implicitly assume that evaluators can be created before data_loader. if evaluators is not None: evaluator = evaluators[idx] else: try: evaluator = cls.build_evaluator(cfg, dataset_name) except NotImplementedError: logger.warn( "No evaluator found. Use `DefaultTrainer.test(evaluators=)`, " "or implement its `build_evaluator` method." ) results[dataset_name] = {} continue with autocast(): results_i = inference_on_dataset(model, data_loader, evaluator) results[dataset_name] = results_i print("AP: {} || AP_s: {} || AP_m: {} || AP_l: {} || AR: {}".format(results_i['segm']['AP_all'], results_i['segm']['AP_s'], results_i['segm']['AP_m'], results_i['segm']['AP_l'], results_i['segm']['AR_all'])) print("DetA: {} || DetRe: {} || DetPr: {}".format(results_i['segm']['DetA'], results_i['segm']['DetRe'], results_i['segm']['DetPr'])) print("AssA: {} || AssRe: {} || AssPr: {}".format(results_i['segm']['AssA'], results_i['segm']['AssRe'], results_i['segm']['AssPr'])) print("HOTA: {} || LocA: {} || DetA: {} || AssA: {}".format(results_i['segm']['HOTA'], results_i['segm']['LocA'], results_i['segm']['DetA'], results_i['segm']['AssA'])) print("FSLAn_count: {} || FSLAn_all: {} || FSLAs_count: {} || FSLAs_all: {} || FSLAm_count: {} || FSLAm_all: {}".format( results_i['segm']['FAn_count'], results_i['segm']['FAn_all'], results_i['segm']['FAs_count'], results_i['segm']['FAs_all'], results_i['segm']['FAm_count'], results_i['segm']['FAm_all'])) print("FSLA: {} || FSLAn: {} || FSLAs: {} || FSLAm: {}".format(results_i['segm']['FA'], results_i['segm']['FAn'], results_i['segm']['FAs'], results_i['segm']['FAm'])) if len(results) == 1: results = list(results.values())[0] return results else: pass def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg() # for poly lr schedule add_deeplab_config(cfg) add_maskformer2_config(cfg) add_avism_config(cfg) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg["eval_only"] = args.eval_only cfg.freeze() default_setup(cfg, args) # Setup logger for "mask_former" module setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="avism") return cfg def main(args): cfg = setup(args) if args.eval_only: model = Trainer.build_model(cfg) DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( cfg.MODEL.WEIGHTS, resume=args.resume ) res = Trainer.test(cfg, model) if cfg.TEST.AUG.ENABLED: raise NotImplementedError if comm.is_main_process(): verify_results(cfg, res) return res trainer = Trainer(cfg) trainer.resume_or_load(resume=args.resume) return trainer.train() if __name__ == "__main__": args = default_argument_parser().parse_args() print("Command Line Args:", args) launch( main, args.num_gpus, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), )