File size: 5,645 Bytes
05884cf 62dc2bf 86e902e 62dc2bf 450f439 05884cf 86e902e 62dc2bf 86e902e b0ae3c4 62dc2bf 86e902e 62dc2bf 86e902e b0ae3c4 86e902e 62dc2bf 86e902e b0ae3c4 86e902e 62dc2bf 86e902e b0ae3c4 86e902e 62dc2bf 86e902e 62dc2bf 86e902e 62dc2bf 86e902e 62dc2bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
---
language:
- pt
thumbnail: "Portugues SBERT for the Legal Domain"
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- transformers
datasets:
- assin
- assin2
- stsb_multi_mt
widget:
- source_sentence: "O advogado apresentou as provas ao juíz."
sentences:
- "O juíz leu as provas."
- "O juíz leu o recurso."
- "O juíz atirou uma pedra."
example_title: "Example 1"
model-index:
- name: SBERTimbau
results:
- task:
name: STS
type: STS
metrics:
- name: PearsonCorrelation
type: PearsonCorrelation
value: 0.84
---
# rufimelo/Legal-SBERTimbau-sts-large-ma
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
rufimelo/Legal-SBERTimbau-sts-large-ma-v3 is based on Legal-BERTimbau-large which derives from [BERTimbau](https://huggingface.co/neuralmind/bert-large-portuguese-cased) alrge.
It is adapted to the Portuguese legal domain and trained for STS on portuguese datasets.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]
model = SentenceTransformer('rufimelo/Legal-SBERTimbau-sts-large-ma-v3')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('rufimelo/Legal-SBERTimbau-sts-large-ma-v3')
model = AutoModel.from_pretrained('rufimelo/Legal-SBERTimbau-sts-large-ma-v3')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results STS
| Model| Assin | Assin2|stsb_multi_mt pt|
| ---------------------------------------- | ---------- | ---------- |---------- |
| Legal-SBERTimbau-sts-base| 0.71457| 0.73545 | |
| Legal-SBERTimbau-sts-base-ma| 0.74874 | 0.79532|0.82254 |
| Legal-SBERTimbau-sts-base-ma-v2| 0.75481 | 0.80262|0.82178|
| Legal-SBERTimbau-sts-large| 0.76629| 0.82357 | |
| Legal-SBERTimbau-sts-large-v2| 0.76299 | 0.81121|0.81726 |
| Legal-SBERTimbau-sts-large-ma| 0.76195| 0.81622 | 0.82608|
| Legal-SBERTimbau-sts-large-ma-v2| 0.7836| 0.8462| 0.8261|
| Legal-SBERTimbau-sts-large-ma-v3| 0.7749| 0.8470| 0.8364|
| ---------------------------------------- | ---------- |---------- |---------- |
| BERTimbau base Fine-tuned for STS|0.78455 | 0.80626|0.82841|
| BERTimbau large Fine-tuned for STS|0.78193 | 0.81758|0.83784|
| ---------------------------------------- | ---------- |---------- |---------- |
| paraphrase-multilingual-mpnet-base-v2| 0.71457| 0.79831 |0.83999 |
| paraphrase-multilingual-mpnet-base-v2 Fine-tuned with assin(s)| 0.77641|0.79831 |0.84575 |
## Training
rufimelo/Legal-SBERTimbau-sts-large-ma-v3 is based on Legal-BERTimbau-large which derives from [BERTimbau](https://huggingface.co/neuralmind/bert-large-portuguese-cased) large.
Firstly, due to the lack of portuguese datasets, it was trained using multilingual knowledge distillation. For the Multilingual Knowledge Distillation process, the teacher model was 'sentence-transformers/stsb-roberta-large', the supposed supported language as English and the language to learn was portuguese.
It was trained for Semantic Textual Similarity, being submitted to a fine tuning stage with the [assin](https://huggingface.co/datasets/assin), [assin2](https://huggingface.co/datasets/assin2) and [stsb_multi_mt pt](https://huggingface.co/datasets/stsb_multi_mt) datasets. (batch 8, 5 epochs 'lr': 1e-5)
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)
```
## Citing & Authors
If you use this work, please cite BERTimbau's work:
```bibtex
@inproceedings{souza2020bertimbau,
author = {F{\'a}bio Souza and
Rodrigo Nogueira and
Roberto Lotufo},
title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
year = {2020}
}
``` |