File size: 2,341 Bytes
2a77d90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdc5e59
 
 
 
 
 
 
 
2a77d90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f720cb6
bdc5e59
2a77d90
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
license: mit
base_model: microsoft/deberta-v3-xsmall
tags:
- generated_from_keras_callback
model-index:
- name: rubakha/deberta
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# rubakha/deberta

This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1950
- Train Accuracy: 0.933
- Validation Loss: 0.2168
- Validation Accuracy: 0.9330
- Train Precision: 0.9356
- Train Recall: 0.933
- Train F1: 0.9326
- Epoch: 2

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 5000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Train Precision | Train Recall | Train F1 | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:---------------:|:------------:|:--------:|:-----:|
| 0.9796     | 0.8995         | 0.3173          | 0.8995              | 0.8999          | 0.8995       | 0.8989   | 0     |
| 0.2811     | 0.932          | 0.2170          | 0.9320              | 0.9343          | 0.932        | 0.9317   | 1     |
| 0.1950     | 0.933          | 0.2168          | 0.9330              | 0.9356          | 0.933        | 0.9326   | 2     |


### Framework versions

- Transformers 4.38.2
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2