Rolando
Set it up
8718761
raw
history blame
10.9 kB
import subprocess
import warnings
import ffmpeg
import torch
import torchaudio
import numpy as np
from typing import Union, Optional
from whisper.audio import SAMPLE_RATE
def is_ytdlp_available():
return subprocess.run('yt-dlp -h', shell=True, capture_output=True).returncode == 0
def _load_file(file: Union[str, bytes], verbose: bool = False, only_ffmpeg: bool = False):
if isinstance(file, str) and '://' in file:
if is_ytdlp_available():
verbosity = ' -q' if verbose is None else (' --progress' if verbose else ' --progress -q')
p = subprocess.run(
f'yt-dlp "{file}" -f ba/w -I 1{verbosity} -o -',
shell=True,
stdout=subprocess.PIPE
)
if len(p.stdout) == 0:
raise RuntimeError(f'Failed to download media from "{file}" with yt-dlp')
return p.stdout
else:
warnings.warn('URL detected but yt-dlp not available. '
'To handle a greater variety of URLs (i.e. non-direct links), '
'install yt-dlp, \'pip install yt-dlp\' (repo: https://github.com/yt-dlp/yt-dlp).')
if not only_ffmpeg:
if is_ytdlp_available():
verbosity = ' -q' if verbose is None else (' --progress' if verbose else ' --progress -q')
p = subprocess.run(
f'yt-dlp "{file}" -f ba/w -I 1{verbosity} -o -',
shell=True,
stdout=subprocess.PIPE
)
if p.returncode != 0 or len(p.stdout) == 0:
raise RuntimeError(f'Failed to download media from "{file}" with yt-dlp')
return p.stdout
else:
warnings.warn('URL detected but yt-dlp not available. '
'To handle a greater variety of URLs (i.e. non-direct links), '
'install yt-dlp, \'pip install yt-dlp\' (repo: https://github.com/yt-dlp/yt-dlp).')
return file
# modified version of whisper.audio.load_audio
def load_audio(file: Union[str, bytes], sr: int = SAMPLE_RATE, verbose: bool = True, only_ffmpeg: bool = False):
"""
Open an audio file and read as mono waveform then resamples as necessary.
Parameters
----------
file : str or bytes
The audio file to open, bytes of file, or URL to audio/video.
sr : int, default ``whisper.model.SAMPLE_RATE``
The sample rate to resample the audio if necessary.
verbose : bool, default True
Whether to print yt-dlp log.
only_ffmpeg : bool, default False
Whether to use only FFmpeg (instead of yt-dlp) for URls.
Returns
-------
numpy.ndarray
A array containing the audio waveform in float32.
"""
file = _load_file(file, verbose=verbose, only_ffmpeg=only_ffmpeg)
if isinstance(file, bytes):
inp, file = file, 'pipe:'
else:
inp = None
try:
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
out, _ = (
ffmpeg.input(file, threads=0)
.output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr)
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True, input=inp)
)
except ffmpeg.Error as e:
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
def voice_freq_filter(wf: (torch.Tensor, np.ndarray), sr: int,
upper_freq: int = None,
lower_freq: int = None) -> torch.Tensor:
if isinstance(wf, np.ndarray):
wf = torch.from_numpy(wf)
if upper_freq is None:
upper_freq = 5000
if lower_freq is None:
lower_freq = 200
assert upper_freq > lower_freq, f'upper_freq {upper_freq} must but greater than lower_freq {lower_freq}'
return torchaudio.functional.highpass_biquad(torchaudio.functional.lowpass_biquad(wf, sr, upper_freq),
sr,
lower_freq)
def is_demucs_available():
from importlib.util import find_spec
if find_spec('demucs') is None:
raise ModuleNotFoundError("Please install Demucs; "
"'pip install -U demucs' or "
"'pip install -U git+https://github.com/facebookresearch/demucs#egg=demucs'; "
"Official Demucs repo: https://github.com/facebookresearch/demucs")
def load_demucs_model():
is_demucs_available()
from demucs.pretrained import get_model_from_args
return get_model_from_args(type('args', (object,), dict(name='htdemucs', repo=None))).cpu().eval()
def demucs_audio(audio: (torch.Tensor, str),
input_sr: int = None,
output_sr: int = None,
model=None,
device=None,
verbose: bool = True,
track_name: str = None,
save_path: str = None,
**demucs_options) -> torch.Tensor:
"""
Isolates vocals / remove noise from ``audio`` with Demucs.
Official repo, https://github.com/facebookresearch/demucs.
"""
if model is None:
model = load_demucs_model()
else:
is_demucs_available()
from demucs.apply import apply_model
if track_name:
track_name = f'"{track_name}"'
if isinstance(audio, (str, bytes)):
if isinstance(audio, str) and not track_name:
track_name = f'"{audio}"'
audio = torch.from_numpy(load_audio(audio, model.samplerate))
elif input_sr != model.samplerate:
if input_sr is None:
raise ValueError('No [input_sr] specified for audio tensor.')
audio = torchaudio.functional.resample(audio,
orig_freq=input_sr,
new_freq=model.samplerate)
if not track_name:
track_name = 'audio track'
audio_dims = audio.dim()
if audio_dims == 1:
audio = audio[None, None].repeat_interleave(2, -2)
else:
if audio.shape[-2] == 1:
audio = audio.repeat_interleave(2, -2)
if audio_dims < 3:
audio = audio[None]
if 'mix' in demucs_options:
audio = demucs_options.pop('mix')
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
vocals_idx = model.sources.index('vocals')
if verbose:
print(f'Isolating vocals from {track_name}')
apply_kwarg = dict(
model=model,
mix=audio,
device=device,
split=True,
overlap=.25,
progress=verbose is not None,
)
apply_kwarg.update(demucs_options)
vocals = apply_model(
**apply_kwarg
)[0, vocals_idx].mean(0)
if device != 'cpu':
torch.cuda.empty_cache()
if output_sr is not None and model.samplerate != output_sr:
vocals = torchaudio.functional.resample(vocals,
orig_freq=model.samplerate,
new_freq=output_sr)
if save_path is not None:
if isinstance(save_path, str) and not save_path.lower().endswith('.wav'):
save_path += '.wav'
torchaudio.save(save_path, vocals[None], output_sr or model.samplerate)
print(f'Saved: {save_path}')
return vocals
def get_samplerate(audiofile: (str, bytes)) -> (int, None):
import re
if isinstance(audiofile, str):
metadata = subprocess.run(f'ffmpeg -i {audiofile}', capture_output=True, shell=True).stderr.decode()
else:
p = subprocess.Popen(f'ffmpeg -i -', stderr=subprocess.PIPE, stdin=subprocess.PIPE, shell=True)
try:
p.stdin.write(audiofile)
except BrokenPipeError:
pass
finally:
metadata = p.communicate()[-1]
if metadata is not None:
metadata = metadata.decode()
sr = re.findall(r'\n.+Stream.+Audio.+\D+(\d+) Hz', metadata)
if sr:
return int(sr[0])
def prep_audio(
audio: Union[str, np.ndarray, torch.Tensor, bytes],
demucs: Union[bool, torch.nn.Module] = False,
demucs_options: dict = None,
only_voice_freq: bool = False,
only_ffmpeg: bool = False,
verbose: Optional[bool] = False,
sr: int = None
) -> torch.Tensor:
"""
Converts input audio of many types into a mono waveform as a torch.Tensor.
Parameters
----------
audio : str or numpy.ndarray or torch.Tensor or bytes
Path/URL to the audio file, the audio waveform, or bytes of audio file.
If audio is :class:`numpy.ndarray` or :class:`torch.Tensor`, the audio must be already at sampled to 16kHz.
demucs : bool or torch.nn.Module, default False
Whether to preprocess ``audio`` with Demucs to isolate vocals / remove noise. Set ``demucs`` to an instance of
a Demucs model to avoid reloading the model for each run.
Demucs must be installed to use. Official repo, https://github.com/facebookresearch/demucs.
demucs_options : dict, optional
Options to use for :func:`stable_whisper.audio.demucs_audio`.
only_voice_freq : bool, default False
Whether to only use sound between 200 - 5000 Hz, where majority of human speech are.
sr : int, default None, meaning ``whisper.audio.SAMPLE_RATE``, 16kHZ
The sample rate of ``audio``.
verbose : bool, default False
Whether to print yt-dlp log.
only_ffmpeg: bool, default False
Whether to use only FFmpeg (and not yt-dlp) for URls.
Returns
-------
torch.Tensor
A mono waveform.
"""
if not sr:
sr = SAMPLE_RATE
if isinstance(audio, (str, bytes)):
if demucs:
demucs_kwargs = dict(
audio=audio,
output_sr=sr,
verbose=verbose,
)
demucs_kwargs.update(demucs_options or {})
audio = demucs_audio(**demucs_kwargs)
else:
audio = torch.from_numpy(load_audio(audio, sr=sr, verbose=verbose, only_ffmpeg=only_ffmpeg))
else:
if isinstance(audio, np.ndarray):
audio = torch.from_numpy(audio)
if demucs:
demucs_kwargs = dict(
audio=audio,
input_sr=sr,
output_sr=sr,
verbose=verbose,
)
demucs_kwargs.update(demucs_options or {})
audio = demucs_audio(**demucs_kwargs)
if only_voice_freq:
audio = voice_freq_filter(audio, sr)
return audio