File size: 10,194 Bytes
8718761 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import string
import torch
import numpy as np
from typing import TYPE_CHECKING, List, Callable, Optional
from itertools import chain
from whisper.audio import TOKENS_PER_SECOND, N_SAMPLES_PER_TOKEN
from whisper.timing import WordTiming, median_filter, dtw, merge_punctuations
if TYPE_CHECKING:
from whisper.tokenizer import Tokenizer
from whisper.model import Whisper
# modified version of whisper.timing.find_alignment
def find_alignment_stable(
model: "Whisper",
tokenizer: "Tokenizer",
text_tokens: List[int],
mel: torch.Tensor,
num_samples: int,
*,
medfilt_width: int = 7,
qk_scale: float = 1.0,
ts_num: int = 0,
ts_noise: float = 0.1,
token_split=None,
audio_features: torch.Tensor = None
) -> List[WordTiming]:
tokens = torch.tensor(
[
*tokenizer.sot_sequence,
tokenizer.no_timestamps,
*text_tokens,
tokenizer.eot,
]
).to(model.device)
# install hooks on the cross attention layers to retrieve the attention weights
QKs = [None] * model.dims.n_text_layer
hooks = [
block.cross_attn.register_forward_hook(
lambda _, ins, outs, index=i: QKs.__setitem__(index, outs[-1])
)
for i, block in enumerate(model.decoder.blocks)
]
with torch.no_grad():
if audio_features is None:
audio_features = model.encoder(mel.unsqueeze(0))
if ts_num:
if ts_noise is None:
ts_noise = 0.1
extra_audio_features = audio_features.repeat_interleave(ts_num, 0)
torch.manual_seed(0)
audio_features = torch.cat([audio_features,
extra_audio_features *
(1 - (torch.rand_like(extra_audio_features) * ts_noise))],
dim=0)
logits = model.decoder(tokens.unsqueeze(0).repeat_interleave(audio_features.shape[0], 0),
audio_features)
else:
logits = model.decoder(tokens.unsqueeze(0), audio_features)
logits = logits[0]
sampled_logits = logits[len(tokenizer.sot_sequence):, : tokenizer.eot]
token_probs = sampled_logits.softmax(dim=-1)
text_token_probs = token_probs[np.arange(len(text_tokens)), text_tokens]
text_token_probs = text_token_probs.tolist()
for hook in hooks:
hook.remove()
# heads * tokens * frames
weights = torch.cat([QKs[_l][:, _h] for _l, _h in model.alignment_heads.indices().T], dim=0)
weights = weights[:, :, : round(num_samples / N_SAMPLES_PER_TOKEN)]
weights = (weights * qk_scale).softmax(dim=-1)
std, mean = torch.std_mean(weights, dim=-2, keepdim=True, unbiased=False)
weights = (weights - mean) / std
weights = median_filter(weights, medfilt_width)
matrix = weights.mean(axis=0)
matrix = matrix[len(tokenizer.sot_sequence): -1]
text_indices, time_indices = dtw(-matrix)
if token_split is None:
words, word_tokens = tokenizer.split_to_word_tokens(text_tokens + [tokenizer.eot])
else:
words, word_tokens = token_split
words.append(tokenizer.decode([tokenizer.eot]))
word_tokens.append([tokenizer.eot])
word_boundaries = np.pad(np.cumsum([len(t) for t in word_tokens[:-1]]), (1, 0))
jumps = np.pad(np.diff(text_indices), (1, 0), constant_values=1).astype(bool)
jump_times = time_indices[jumps].clip(min=0) / TOKENS_PER_SECOND
start_times = jump_times[word_boundaries[:-1]]
end_times = jump_times[word_boundaries[1:]]
word_probabilities = [
np.mean(text_token_probs[i:j])
for i, j in zip(word_boundaries[:-1], word_boundaries[1:])
]
return [
WordTiming(word, tokens, start, end, probability)
for word, tokens, start, end, probability in zip(
words, word_tokens, start_times, end_times, word_probabilities
)
]
def _split_tokens(tokens: List[int], tokenizer: "Tokenizer"):
split_by_space = getattr(tokenizer, 'language_code', tokenizer.language) not in {"zh", "ja", "th", "lo", "my"}
text = tokenizer.decode_with_timestamps(tokens)
words = []
word_tokens = []
curr_tokens = []
is_append = False
for token in tokens:
curr_tokens.append(token)
curr_text = tokenizer.decode(curr_tokens)
is_whole = token >= tokenizer.eot
if not is_whole:
is_whole = text[:len(curr_text)] == curr_text
if is_whole and split_by_space:
is_append = not (curr_text.startswith(" ") or curr_text.strip() in string.punctuation)
if is_whole:
if is_append and len(words) != 0:
words[-1] += curr_text
word_tokens[-1].extend(curr_tokens)
else:
words.append(curr_text)
word_tokens.append(curr_tokens)
text = text[len(curr_text):]
curr_tokens = []
if len(curr_tokens) != 0:
words.append(curr_text if len(text) == 0 else text)
word_tokens.append(curr_tokens)
elif len(text) != 0:
words[-1] += text
return words, word_tokens
def split_word_tokens(segments: List[dict],
tokenizer: "Tokenizer",
*,
padding: (str, int) = None,
split_callback: Callable = None):
if padding is not None:
if isinstance(padding, str):
padding = tokenizer.encode(padding)
else:
padding = [padding]
tokens = []
seg_indices = []
words = []
word_tokens = []
for i, s in enumerate(segments):
temp_word_tokens = [t for t in s['tokens'] if not isinstance(t, int) or t < tokenizer.eot]
curr_words, curr_word_tokens = (
_split_tokens(temp_word_tokens, tokenizer)
if split_callback is None else
split_callback(temp_word_tokens, tokenizer)
)
assert len(curr_words) == len(curr_word_tokens), \
f'word count and token group count do not match, {len(curr_words)} and {len(curr_word_tokens)}'
if (
padding is not None and
curr_word_tokens[0][0] != padding and
(len(tokens) == 0 or tokens[-1] != padding)
):
tokens.extend(padding)
words.append(None)
word_tokens.append(padding)
seg_indices.extend([i] * len(curr_words))
tokens.extend(list(chain.from_iterable(curr_word_tokens)))
words.extend(curr_words)
word_tokens.extend(curr_word_tokens)
return tokens, (words, word_tokens), seg_indices
def pop_empty_alignment(alignment: List[WordTiming]):
return list(reversed([alignment.pop(i) for i in reversed(range(len(alignment))) if alignment[i].word is None]))
# modified version of whisper.timing.add_word_timestamps
def add_word_timestamps_stable(
*,
segments: List[dict],
model: "Whisper",
tokenizer: "Tokenizer",
mel: torch.Tensor,
num_samples: int,
prepend_punctuations: str = "\"'“¿([{-",
append_punctuations: str = "\"'.。,,!!??::”)]}、",
audio_features: torch.Tensor = None,
ts_num: int = 0,
ts_noise: float = 0.1,
min_word_dur: float = 0.1,
split_callback: Callable = None,
gap_padding: Optional[str] = ' ...',
**kwargs,
):
if len(segments) == 0:
return
if min_word_dur is None:
min_word_dur = 0
if prepend_punctuations is None:
prepend_punctuations = "\"'“¿([{-"
if append_punctuations is None:
append_punctuations = "\"'.。,,!!??::”)]}、"
def align():
for seg in segments:
seg['words'] = []
text_tokens, token_split, seg_indices = split_word_tokens(segments, tokenizer,
padding=gap_padding, split_callback=split_callback)
alignment = find_alignment_stable(model, tokenizer, text_tokens, mel, num_samples,
**kwargs,
token_split=token_split,
audio_features=audio_features,
ts_num=ts_num,
ts_noise=ts_noise)
alt_beginning_alignment = pop_empty_alignment(alignment)
merge_punctuations(alignment, prepend_punctuations, append_punctuations)
time_offset = segments[0]["seek"]
assert len(alignment) == len(seg_indices)
assert (gap_padding is None or len(segments) == len(alt_beginning_alignment))
for i, timing in zip(seg_indices, alignment):
if len(timing.tokens) != 0:
start = timing.start
end = timing.end
if (
len(segments[i]['words']) == 0 and
((end - start) < min_word_dur) and
len(alt_beginning_alignment)
):
start = alt_beginning_alignment[i].start
segments[i]['words'].append(
dict(
word=timing.word,
start=round(time_offset + start, 3),
end=round(time_offset + end, 3),
probability=timing.probability,
tokens=timing.tokens
)
)
align()
if (
gap_padding is not None and
any(
(word['end'] - word['start']) < min_word_dur
for seg in segments
for word in seg['words']
)
):
gap_padding = None
align()
for segment in segments:
if len(words := segment["words"]) > 0:
# adjust the segment-level timestamps based on the word-level timestamps
segment["start"] = words[0]["start"]
segment["end"] = words[-1]["end"]
|