File size: 15,491 Bytes
8718761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import warnings
from typing import List, Union, Tuple, Optional
from itertools import chain

import torch
import torch.nn.functional as F
import numpy as np

from whisper.audio import TOKENS_PER_SECOND, SAMPLE_RATE, N_SAMPLES_PER_TOKEN


NONVAD_SAMPLE_RATES = (16000,)
VAD_SAMPLE_RATES = (16000, 8000)


def is_ascending_sequence(
        seq: List[Union[int, float]],
        verbose=True
) -> bool:
    """
    check if a sequence of numbers are in ascending order
    """
    is_ascending = True
    for idx, (i, j) in enumerate(zip(seq[:-1], seq[1:])):
        if i > j:
            is_ascending = False
            if verbose:
                print(f'[Index{idx}]:{i} > [Index{idx + 1}]:{j}')
            else:
                break

    return is_ascending


def valid_ts(
        ts: List[dict],
        warn=True
) -> bool:
    valid = is_ascending_sequence(list(chain.from_iterable([s['start'], s['end']] for s in ts)), False)
    if warn and not valid:
        warnings.warn(message='Found timestamp(s) jumping backwards in time. '
                              'Use word_timestamps=True to avoid the issue.')
    return valid


def mask2timing(
        silence_mask: (np.ndarray, torch.Tensor),
        time_offset: float = 0.0,
) -> (Tuple[np.ndarray, np.ndarray], None):
    if silence_mask is None or not silence_mask.any():
        return
    assert silence_mask.ndim == 1
    if isinstance(silence_mask, torch.Tensor):
        silences = silence_mask.cpu().numpy().copy()
    elif isinstance(silence_mask, np.ndarray):
        silences = silence_mask.copy()
    else:
        raise NotImplementedError(f'Expected torch.Tensor or numpy.ndarray, but got {type(silence_mask)}')
    silences[0] = False
    silences[-1] = False
    silent_starts = np.logical_and(~silences[:-1], silences[1:]).nonzero()[0] / TOKENS_PER_SECOND
    silent_ends = (np.logical_and(silences[:-1], ~silences[1:]).nonzero()[0] + 1) / TOKENS_PER_SECOND
    if time_offset:
        silent_starts += time_offset
        silent_ends += time_offset
    return silent_starts, silent_ends


def timing2mask(
        silent_starts: np.ndarray,
        silent_ends: np.ndarray,
        size: int,
        time_offset: float = None
) -> torch.Tensor:
    assert len(silent_starts) == len(silent_ends)
    ts_token_mask = torch.zeros(size, dtype=torch.bool)
    if time_offset:
        silent_starts = (silent_starts - time_offset).clip(min=0)
        silent_ends = (silent_ends - time_offset).clip(min=0)
    mask_i = (silent_starts * TOKENS_PER_SECOND).round().astype(np.int16)
    mask_e = (silent_ends * TOKENS_PER_SECOND).round().astype(np.int16)
    for mi, me in zip(mask_i, mask_e):
        ts_token_mask[mi:me+1] = True

    return ts_token_mask


def suppress_silence(
        result_obj,
        silent_starts: Union[np.ndarray, List[float]],
        silent_ends: Union[np.ndarray, List[float]],
        min_word_dur: float,
        nonspeech_error: float = 0.3,
        keep_end: Optional[bool] = True
):
    assert len(silent_starts) == len(silent_ends)
    if len(silent_starts) == 0 or (result_obj.end - result_obj.start) <= min_word_dur:
        return
    if isinstance(silent_starts, list):
        silent_starts = np.array(silent_starts)
    if isinstance(silent_ends, list):
        silent_ends = np.array(silent_ends)

    start_overlaps = np.all(
        (silent_starts <= result_obj.start, result_obj.start < silent_ends, silent_ends <= result_obj.end),
        axis=0
    ).nonzero()[0].tolist()
    if start_overlaps:
        new_start = silent_ends[start_overlaps[0]]
        result_obj.start = min(new_start, round(result_obj.end - min_word_dur, 3))
        if (result_obj.end - result_obj.start) <= min_word_dur:
            return

    end_overlaps = np.all(
        (result_obj.start <= silent_starts, silent_starts < result_obj.end, result_obj.end <= silent_ends),
        axis=0
    ).nonzero()[0].tolist()
    if end_overlaps:
        new_end = silent_starts[end_overlaps[0]]
        result_obj.end = max(new_end, round(result_obj.start + min_word_dur, 3))
        if (result_obj.end - result_obj.start) <= min_word_dur:
            return

    if nonspeech_error:
        matches = np.logical_and(
            result_obj.start <= silent_starts,
            result_obj.end >= silent_ends,
        ).nonzero()[0].tolist()
        if len(matches) == 0:
            return
        silence_start = np.min(silent_starts[matches])
        silence_end = np.max(silent_ends[matches])
        start_extra = silence_start - result_obj.start
        end_extra = result_obj.end - silence_end
        silent_duration = silence_end - silence_start
        start_within_error = (start_extra / silent_duration) <= nonspeech_error
        end_within_error = (end_extra / silent_duration) <= nonspeech_error
        if keep_end is None:
            keep_end = start_extra <= end_extra
            within_error = start_within_error if keep_end else end_within_error
        else:
            within_error = start_within_error or end_within_error

        if within_error:
            if keep_end:
                result_obj.start = min(silence_end, round(result_obj.end - min_word_dur, 3))
            else:
                result_obj.end = max(silence_start, round(result_obj.start + min_word_dur, 3))


def standardize_audio(
        audio: Union[torch.Tensor, np.ndarray, str, bytes],
        resample_sr: Tuple[Optional[int], Union[int, Tuple[int]]] = None
) -> torch.Tensor:
    if isinstance(audio, (str, bytes)):
        from .audio import load_audio
        audio = load_audio(audio)
    if isinstance(audio, np.ndarray):
        audio = torch.from_numpy(audio)
    audio = audio.float()
    if resample_sr:
        in_sr, out_sr = resample_sr
        if in_sr:
            if isinstance(out_sr, int):
                out_sr = [out_sr]
            if in_sr not in out_sr:
                from torchaudio.functional import resample
                audio = resample(audio, in_sr, out_sr[0])

    return audio


def audio2loudness(
        audio_tensor: torch.Tensor
) -> (torch.Tensor, None):
    assert audio_tensor.dim() == 1, f'waveform must be 1D, but got {audio_tensor.dim()}D'
    audio_tensor = audio_tensor.abs()
    k = int(audio_tensor.numel() * 0.001)
    if k:
        top_values, _ = torch.topk(audio_tensor, k)
        threshold = top_values[-1]
    else:
        threshold = audio_tensor.quantile(0.999, dim=-1)
    if (token_count := round(audio_tensor.shape[-1] / N_SAMPLES_PER_TOKEN)+1) > 2:
        if threshold < 1e-5:
            return torch.zeros(token_count, dtype=audio_tensor.dtype, device=audio_tensor.device)
        audio_tensor = audio_tensor / min(1., threshold * 1.75)
        audio_tensor = F.interpolate(
            audio_tensor[None, None],
            size=token_count,
            mode='linear',
            align_corners=False
        )[0, 0]
        return audio_tensor


def visualize_mask(
        loudness_tensor: torch.Tensor,
        silence_mask: torch.Tensor = None,
        width: int = 1500,
        height: int = 200,
        output: str = None,
):
    no_silence = silence_mask is None or not silence_mask.any()
    assert no_silence or silence_mask.shape[0] == loudness_tensor.shape[0]
    if loudness_tensor.shape[0] < 2:
        raise NotImplementedError(f'audio size, {loudness_tensor.shape[0]}, is too short to visualize')
    else:
        width = loudness_tensor.shape[0] if width == -1 else width
        im = torch.zeros((height, width, 3), dtype=torch.uint8)
        mid = round(height / 2)
        for i, j in enumerate(loudness_tensor.tolist()):
            j = round(abs(j) * mid)
            if j == 0 or width <= i:
                continue
            im[mid - j:mid + 1, i] = 255
            im[mid + 1:mid + j + 1, i] = 255
        if not no_silence:
            im[:, silence_mask[:width], 1:] = 0
        im = im.cpu().numpy()
        if output and not output.endswith('.png'):
            output += '.png'
        try:
            from PIL import Image
        except ModuleNotFoundError:
            try:
                import cv2
            except ModuleNotFoundError:
                raise ModuleNotFoundError('Failed to import "PIL" or "cv2" to visualize suppression mask. '
                                          'Try "pip install Pillow" or "pip install opencv-python"')
            else:
                im = im[..., [2, 1, 0]]
                if isinstance(output, str):
                    cv2.imwrite(output, im)
                else:
                    cv2.imshow('image', im)
                    cv2.waitKey(0)
        else:
            im = Image.fromarray(im)
            if isinstance(output, str):
                im.save(output)
            else:
                im.show(im)
        if output:
            print(f'Save: {output}')


def wav2mask(
        audio: (torch.Tensor, np.ndarray, str, bytes),
        q_levels: int = 20,
        k_size: int = 5,
        sr: int = None
) -> (Tuple[torch.Tensor, Tuple[np.ndarray, np.ndarray]], None):
    """
    Generate 1D mask from waveform for suppressing timestamp tokens.
    """
    audio = standardize_audio(audio, (sr, NONVAD_SAMPLE_RATES))
    loudness_tensor = audio2loudness(audio)
    if loudness_tensor is None:
        return
    p = k_size // 2 if k_size else 0
    if p and p < loudness_tensor.shape[-1]:
        assert k_size % 2, f'kernel_size must be odd but got {k_size}'
        mask = torch.avg_pool1d(
            F.pad(
                loudness_tensor[None],
                (p, p),
                'reflect'
            ),
            kernel_size=k_size,
            stride=1
        )[0]
    else:
        mask = loudness_tensor.clone()

    if q_levels:
        mask = mask.mul(q_levels).round()

    mask = mask.bool()

    if not mask.any():  # entirely silent
        return ~mask
    temp_timings = mask2timing(mask)
    s, e = temp_timings
    se_mask = (e - s) > 0.1
    s = s[se_mask]
    e = e[se_mask]
    mask = ~timing2mask(s, e, loudness_tensor.shape[-1])

    if not mask.any():  # no silence
        return

    return mask


_model_cache = {}


def get_vad_silence_func(
        onnx=False,
        verbose: (bool, None) = False
):
    if onnx in _model_cache:
        model, get_ts = _model_cache[onnx]
    else:
        model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad:master',
                                      model='silero_vad',
                                      verbose=verbose,
                                      onnx=onnx,
                                      trust_repo=True)
        get_ts = utils[0]
        _model_cache[onnx] = (model, get_ts)

    warnings.filterwarnings('ignore', message=r'operator \(\) profile_node.*', category=UserWarning)

    def get_speech_timestamps(wav: torch.Tensor, threshold: float = .35):
        return get_ts(wav, model, threshold, min_speech_duration_ms=100, min_silence_duration_ms=20)

    def vad_silence_timing(
            audio: (torch.Tensor, np.ndarray, str, bytes),
            speech_threshold: float = .35,
            sr: int = None
    ) -> (Tuple[np.ndarray, np.ndarray], None):

        audio = standardize_audio(audio, (sr, VAD_SAMPLE_RATES))

        total_duration = round(audio.shape[-1] / SAMPLE_RATE, 3)
        if not total_duration:
            return
        ori_t = torch.get_num_threads()
        if verbose is not None:
            print('Predicting silences(s) with VAD...\r', end='')
        torch.set_num_threads(1)  # vad was optimized for single performance
        speech_ts = get_speech_timestamps(audio, speech_threshold)
        if verbose is not None:
            print('Predicted silence(s) with VAD.       ')
        torch.set_num_threads(ori_t)
        if len(speech_ts) == 0:  # all silent
            return np.array([0.0]), np.array([total_duration])
        silent_starts = []
        silent_ends = []
        for ts in speech_ts:
            start = round(ts['start'] / SAMPLE_RATE, 3)
            end = round(ts['end'] / SAMPLE_RATE, 3)
            if start != 0:
                silent_ends.append(start)
                if len(silent_starts) == 0:
                    silent_starts.append(0.0)
            if end < total_duration:
                silent_starts.append(end)

        if len(silent_starts) == 0 and len(silent_ends) == 0:
            return

        if len(silent_starts) != 0 and (len(silent_ends) == 0 or silent_ends[-1] < silent_starts[-1]):
            silent_ends.append(total_duration)

        silent_starts = np.array(silent_starts)
        silent_ends = np.array(silent_ends)

        return silent_starts, silent_ends

    return vad_silence_timing


def visualize_suppression(
        audio: Union[torch.Tensor, np.ndarray, str, bytes],
        output: str = None,
        q_levels: int = 20,
        k_size: int = 5,
        vad_threshold: float = 0.35,
        vad: bool = False,
        max_width: int = 1500,
        height: int = 200
):
    """
    Visualize regions on the waveform of ``audio`` detected as silent.

    Regions on the waveform colored red are detected as silent.

    Parameters
    ----------
    audio : str or numpy.ndarray or torch.Tensor or bytes
        Path/URL to the audio file, the audio waveform, or bytes of audio file.
        If audio is ``numpy.ndarray`` or ``torch.Tensor``, the audio must be already at sampled to 16kHz.
    output : str, default None, meaning image will be shown directly via Pillow or opencv-python
        Path to save visualization.
    q_levels : int, default 20
        Quantization levels for generating timestamp suppression mask; ignored if ``vad = true``.
        Acts as a threshold to marking sound as silent.
        Fewer levels will increase the threshold of volume at which to mark a sound as silent.
    k_size : int, default 5
        Kernel size for avg-pooling waveform to generate timestamp suppression mask; ignored if ``vad = true``.
        Recommend 5 or 3; higher sizes will reduce detection of silence.
    vad : bool, default False
        Whether to use Silero VAD to generate timestamp suppression mask.
        Silero VAD requires PyTorch 1.12.0+. Official repo, https://github.com/snakers4/silero-vad.
    vad_threshold : float, default 0.35
        Threshold for detecting speech with Silero VAD. Low threshold reduces false positives for silence detection.
    max_width : int, default 1500
        Maximum width of visualization to avoid overly large image from long audio.
        Each unit of pixel is equivalent  to 1 token.  Use -1 to visualize the entire audio track.
    height : int, default 200
        Height of visualization.
    """
    max_n_samples = None if max_width == -1 else round(max_width * N_SAMPLES_PER_TOKEN)

    audio = standardize_audio(audio)
    if max_n_samples is None:
        max_width = audio.shape[-1]
    else:
        audio = audio[:max_n_samples]
    loudness_tensor = audio2loudness(audio)
    width = min(max_width, loudness_tensor.shape[-1])
    if loudness_tensor is None:
        raise NotImplementedError(f'Audio is too short and cannot visualized.')

    if vad:
        silence_timings = get_vad_silence_func()(audio, vad_threshold)
        silence_mask = None if silence_timings is None else timing2mask(*silence_timings, size=loudness_tensor.shape[0])
    else:
        silence_mask = wav2mask(audio, q_levels=q_levels, k_size=k_size)

    visualize_mask(loudness_tensor, silence_mask, width=width, height=height, output=output)