File size: 91,150 Bytes
8718761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
import warnings
import re
import torch
import numpy as np
from typing import Union, List, Tuple, Optional, Callable
from dataclasses import dataclass
from copy import deepcopy
from itertools import chain

from .stabilization import suppress_silence, get_vad_silence_func, mask2timing, wav2mask
from .text_output import *
from .utils import str_to_valid_type, format_timestamp, UnsortedException


__all__ = ['WhisperResult', 'Segment']


def _combine_attr(obj: object, other_obj: object, attr: str):
    if (val := getattr(obj, attr)) is not None:
        other_val = getattr(other_obj, attr)
        if isinstance(val, list):
            if other_val is None:
                setattr(obj, attr, None)
            else:
                val.extend(other_val)
        else:
            new_val = None if other_val is None else ((val + other_val) / 2)
            setattr(obj, attr, new_val)


def _increment_attr(obj: object, attr: str, val: Union[int, float]):
    if (curr_val := getattr(obj, attr, None)) is not None:
        setattr(obj, attr, curr_val + val)


@dataclass
class WordTiming:
    word: str
    start: float
    end: float
    probability: float = None
    tokens: List[int] = None
    left_locked: bool = False
    right_locked: bool = False
    segment_id: Optional[int] = None
    id: Optional[int] = None

    def __len__(self):
        return len(self.word)

    def __add__(self, other: 'WordTiming'):
        self_copy = deepcopy(self)

        self_copy.start = min(self_copy.start, other.start)
        self_copy.end = max(other.end, self_copy.end)
        self_copy.word += other.word
        self_copy.left_locked = self_copy.left_locked or other.left_locked
        self_copy.right_locked = self_copy.right_locked or other.right_locked
        _combine_attr(self_copy, other, 'probability')
        _combine_attr(self_copy, other, 'tokens')

        return self_copy

    def __deepcopy__(self, memo=None):
        return self.copy()

    def copy(self):
        return WordTiming(
            word=self.word,
            start=self.start,
            end=self.end,
            probability=self.probability,
            tokens=None if self.tokens is None else self.tokens.copy(),
            left_locked=self.left_locked,
            right_locked=self.right_locked,
            segment_id=self.segment_id,
            id=self.id
        )

    @property
    def duration(self):
        return round(self.end - self.start, 3)

    def round_all_timestamps(self):
        self.start = round(self.start, 3)
        self.end = round(self.end, 3)

    def offset_time(self, offset_seconds: float):
        self.start = round(self.start + offset_seconds, 3)
        self.end = round(self.end + offset_seconds, 3)

    def to_dict(self):
        dict_ = deepcopy(self).__dict__
        dict_.pop('left_locked')
        dict_.pop('right_locked')
        return dict_

    def lock_left(self):
        self.left_locked = True

    def lock_right(self):
        self.right_locked = True

    def lock_both(self):
        self.lock_left()
        self.lock_right()

    def unlock_both(self):
        self.left_locked = False
        self.right_locked = False

    def suppress_silence(self,
                         silent_starts: np.ndarray,
                         silent_ends: np.ndarray,
                         min_word_dur: float = 0.1,
                         nonspeech_error: float = 0.3,
                         keep_end: Optional[bool] = True):
        suppress_silence(self, silent_starts, silent_ends, min_word_dur, nonspeech_error, keep_end)
        return self

    def rescale_time(self, scale_factor: float):
        self.start = round(self.start * scale_factor, 3)
        self.end = round(self.end * scale_factor, 3)

    def clamp_max(self, max_dur: float, clip_start: bool = False, verbose: bool = False):
        if self.duration > max_dur:
            if clip_start:
                new_start = round(self.end - max_dur, 3)
                if verbose:
                    print(f'Start: {self.start} -> {new_start}\nEnd: {self.end}\nText:"{self.word}"\n')
                self.start = new_start

            else:
                new_end = round(self.start + max_dur, 3)
                if verbose:
                    print(f'Start: {self.start}\nEnd: {self.end} -> {new_end}\nText:"{self.word}"\n')
                self.end = new_end

    def set_segment(self, segment: 'Segment'):
        self._segment = segment

    def get_segment(self) -> Union['Segment', None]:
        """
        Return instance of :class:`stable_whisper.result.Segment` that this instance is a part of.
        """
        return getattr(self, '_segment', None)


def _words_by_lock(words: List[WordTiming], only_text: bool = False, include_single: bool = False):
    """
    Return a nested list of words such that each sublist contains words that are locked together.
    """
    all_words = []
    for word in words:
        if len(all_words) == 0 or not (all_words[-1][-1].right_locked or word.left_locked):
            all_words.append([word])
        else:
            all_words[-1].append(word)
    if only_text:
        all_words = list(map(lambda ws: list(map(lambda w: w.word, ws)), all_words))
    if not include_single:
        all_words = [ws for ws in all_words if len(ws) > 1]
    return all_words


@dataclass
class Segment:
    start: float
    end: float
    text: str
    seek: float = None
    tokens: List[int] = None
    temperature: float = None
    avg_logprob: float = None
    compression_ratio: float = None
    no_speech_prob: float = None
    words: Union[List[WordTiming], List[dict]] = None
    ori_has_words: bool = None
    id: int = None

    def __getitem__(self, index: int) -> WordTiming:
        if self.words is None:
            raise ValueError('segment contains no words')
        return self.words[index]

    def __delitem__(self, index: int):
        if self.words is None:
            raise ValueError('segment contains no words')
        del self.words[index]
        self.reassign_ids()
        self.update_seg_with_words()

    def __deepcopy__(self, memo=None):
        return self.copy()

    def copy(self, new_words: Optional[List[WordTiming]] = None):
        if new_words is None:
            words = None if self.words is None else [w.copy() for w in self.words]
        else:
            words = [w.copy() for w in new_words]

        new_seg = Segment(
            start=self.start,
            end=self.end,
            text=self.text,
            seek=self.seek,
            tokens=self.tokens,
            temperature=self.temperature,
            avg_logprob=self.avg_logprob,
            compression_ratio=self.compression_ratio,
            no_speech_prob=self.no_speech_prob,
            words=words,
            id=self.id
        )
        new_seg.update_seg_with_words()
        return new_seg

    def to_display_str(self, only_segment: bool = False):
        line = f'[{format_timestamp(self.start)} --> {format_timestamp(self.end)}] "{self.text}"'
        if self.has_words and not only_segment:
            line += '\n' + '\n'.join(
                f"-[{format_timestamp(w.start)}] -> [{format_timestamp(w.end)}] \"{w.word}\"" for w in self.words
            ) + '\n'
        return line

    @property
    def has_words(self):
        return bool(self.words)

    @property
    def duration(self):
        return self.end - self.start

    def word_count(self):
        if self.has_words:
            return len(self.words)
        return -1

    def char_count(self):
        if self.has_words:
            return sum(len(w) for w in self.words)
        return len(self.text)

    def __post_init__(self):
        if self.has_words:
            self.words: List[WordTiming] = \
                [WordTiming(**word) if isinstance(word, dict) else word for word in self.words]
            for w in self.words:
                w.set_segment(self)
        if self.ori_has_words is None:
            self.ori_has_words = self.has_words
        self.round_all_timestamps()

    def __add__(self, other: 'Segment'):
        self_copy = deepcopy(self)

        self_copy.start = min(self_copy.start, other.start)
        self_copy.end = max(other.end, self_copy.end)
        self_copy.text += other.text

        _combine_attr(self_copy, other, 'tokens')
        _combine_attr(self_copy, other, 'temperature')
        _combine_attr(self_copy, other, 'avg_logprob')
        _combine_attr(self_copy, other, 'compression_ratio')
        _combine_attr(self_copy, other, 'no_speech_prob')
        if self_copy.has_words:
            if other.has_words:
                self_copy.words.extend(other.words)
            else:
                self_copy.words = None

        return self_copy

    def _word_operations(self, operation: str, *args, **kwargs):
        if self.has_words:
            for w in self.words:
                getattr(w, operation)(*args, **kwargs)

    def round_all_timestamps(self):
        self.start = round(self.start, 3)
        self.end = round(self.end, 3)
        if self.has_words:
            for word in self.words:
                word.round_all_timestamps()

    def offset_time(self, offset_seconds: float):
        self.start = round(self.start + offset_seconds, 3)
        self.end = round(self.end + offset_seconds, 3)
        _increment_attr(self, 'seek', offset_seconds)
        self._word_operations('offset_time', offset_seconds)

    def add_words(self, index0: int, index1: int, inplace: bool = False):
        if self.has_words:
            new_word = self.words[index0] + self.words[index1]
            if inplace:
                i0, i1 = sorted([index0, index1])
                self.words[i0] = new_word
                del self.words[i1]
            return new_word

    def rescale_time(self, scale_factor: float):
        self.start = round(self.start * scale_factor, 3)
        self.end = round(self.end * scale_factor, 3)
        if self.seek is not None:
            self.seek = round(self.seek * scale_factor, 3)
        self._word_operations('rescale_time', scale_factor)
        self.update_seg_with_words()

    def apply_min_dur(self, min_dur: float, inplace: bool = False):
        """
        Merge any word with adjacent word if its duration is less than ``min_dur``.
        """
        segment = self if inplace else deepcopy(self)
        if not self.has_words:
            return segment
        max_i = len(segment.words) - 1
        if max_i == 0:
            return segment
        for i in reversed(range(len(segment.words))):
            if max_i == 0:
                break
            if segment.words[i].duration < min_dur:
                if i == max_i:
                    segment.add_words(i-1, i, inplace=True)
                elif i == 0:
                    segment.add_words(i, i+1, inplace=True)
                else:
                    if segment.words[i+1].duration < segment.words[i-1].duration:
                        segment.add_words(i-1, i, inplace=True)
                    else:
                        segment.add_words(i, i+1, inplace=True)
                max_i -= 1
        return segment

    def _to_reverse_text(
            self,
            prepend_punctuations: str = None,
            append_punctuations: str = None
    ):
        """
        Return a copy with words reversed order per segment.
        """
        if prepend_punctuations is None:
            prepend_punctuations = "\"'“¿([{-"
        if prepend_punctuations and ' ' not in prepend_punctuations:
            prepend_punctuations += ' '
        if append_punctuations is None:
            append_punctuations = "\"'.。,,!!??::”)]}、"
        self_copy = deepcopy(self)
        has_prepend = bool(prepend_punctuations)
        has_append = bool(append_punctuations)
        if has_prepend or has_append:
            word_objs = (
                self_copy.words
                if self_copy.has_words else
                [WordTiming(w, 0, 1, 0) for w in self_copy.text.split(' ')]
            )
            for word in word_objs:
                new_append = ''
                if has_prepend:
                    for _ in range(len(word)):
                        char = word.word[0]
                        if char in prepend_punctuations:
                            new_append += char
                            word.word = word.word[1:]
                        else:
                            break
                new_prepend = ''
                if has_append:
                    for _ in range(len(word)):
                        char = word.word[-1]
                        if char in append_punctuations:
                            new_prepend += char
                            word.word = word.word[:-1]
                        else:
                            break
                word.word = f'{new_prepend}{word.word}{new_append[::-1]}'
            self_copy.text = ''.join(w.word for w in reversed(word_objs))

        return self_copy

    def to_dict(self, reverse_text: Union[bool, tuple] = False):
        if reverse_text:
            seg_dict = (
                (self._to_reverse_text(*reverse_text)
                 if isinstance(reverse_text, tuple) else
                 self._to_reverse_text()).__dict__
            )
        else:
            seg_dict = deepcopy(self).__dict__
        seg_dict.pop('ori_has_words')
        if self.has_words:
            seg_dict['words'] = [w.to_dict() for w in seg_dict['words']]
        elif self.ori_has_words:
            seg_dict['words'] = []
        else:
            seg_dict.pop('words')
        if self.id is None:
            seg_dict.pop('id')
        if reverse_text:
            seg_dict['reversed_text'] = True
        return seg_dict

    def words_by_lock(self, only_text: bool = True, include_single: bool = False):
        return _words_by_lock(self.words, only_text=only_text, include_single=include_single)

    @property
    def left_locked(self):
        if self.has_words:
            return self.words[0].left_locked
        return False

    @property
    def right_locked(self):
        if self.has_words:
            return self.words[-1].right_locked
        return False

    def lock_left(self):
        if self.has_words:
            self.words[0].lock_left()

    def lock_right(self):
        if self.has_words:
            self.words[-1].lock_right()

    def lock_both(self):
        self.lock_left()
        self.lock_right()

    def unlock_all_words(self):
        self._word_operations('unlock_both')

    def reassign_ids(self):
        if self.has_words:
            for i, w in enumerate(self.words):
                w.segment_id = self.id
                w.id = i

    def update_seg_with_words(self):
        if self.has_words:
            self.start = self.words[0].start
            self.end = self.words[-1].end
            self.text = ''.join(w.word for w in self.words)
            self.tokens = (
                None
                if any(w.tokens is None for w in self.words) else
                [t for w in self.words for t in w.tokens]
            )
            for w in self.words:
                w.set_segment(self)

    def suppress_silence(self,
                         silent_starts: np.ndarray,
                         silent_ends: np.ndarray,
                         min_word_dur: float = 0.1,
                         word_level: bool = True,
                         nonspeech_error: float = 0.3,
                         use_word_position: bool = True):
        if self.has_words:
            words = self.words if word_level or len(self.words) == 1 else [self.words[0], self.words[-1]]
            for i, w in enumerate(words, 1):
                if use_word_position:
                    keep_end = True if i == 1 else (False if i == len(words) else None)
                else:
                    keep_end = None
                w.suppress_silence(silent_starts, silent_ends, min_word_dur, nonspeech_error, keep_end)
            self.update_seg_with_words()
        else:
            suppress_silence(self,
                             silent_starts,
                             silent_ends,
                             min_word_dur,
                             nonspeech_error)

        return self

    def get_locked_indices(self):
        locked_indices = [i
                          for i, (left, right) in enumerate(zip(self.words[1:], self.words[:-1]))
                          if left.left_locked or right.right_locked]
        return locked_indices

    def get_gaps(self, as_ndarray=False):
        if self.has_words:
            s_ts = np.array([w.start for w in self.words])
            e_ts = np.array([w.end for w in self.words])
            gap = s_ts[1:] - e_ts[:-1]
            return gap if as_ndarray else gap.tolist()
        return []

    def get_gap_indices(self, max_gap: float = 0.1):  # for splitting
        if not self.has_words or len(self.words) < 2:
            return []
        if max_gap is None:
            max_gap = 0
        indices = (self.get_gaps(True) > max_gap).nonzero()[0].tolist()
        return sorted(set(indices) - set(self.get_locked_indices()))

    def get_punctuation_indices(self, punctuation: Union[List[str], List[Tuple[str, str]], str]):  # for splitting
        if not self.has_words or len(self.words) < 2:
            return []
        if isinstance(punctuation, str):
            punctuation = [punctuation]
        indices = []
        for p in punctuation:
            if isinstance(p, str):
                for i, s in enumerate(self.words[:-1]):
                    if s.word.endswith(p):
                        indices.append(i)
                    elif i != 0 and s.word.startswith(p):
                        indices.append(i-1)
            else:
                ending, beginning = p
                indices.extend([i for i, (w0, w1) in enumerate(zip(self.words[:-1], self.words[1:]))
                                if w0.word.endswith(ending) and w1.word.startswith(beginning)])

        return sorted(set(indices) - set(self.get_locked_indices()))

    def get_length_indices(self, max_chars: int = None, max_words: int = None, even_split: bool = True,
                           include_lock: bool = False):
        # for splitting
        if not self.has_words or (max_chars is None and max_words is None):
            return []
        assert max_chars != 0 and max_words != 0, \
            f'max_chars and max_words must be greater 0, but got {max_chars} and {max_words}'
        if len(self.words) < 2:
            return []
        indices = []
        if even_split:
            char_count = -1 if max_chars is None else sum(map(len, self.words))
            word_count = -1 if max_words is None else len(self.words)
            exceed_chars = max_chars is not None and char_count > max_chars
            exceed_words = max_words is not None and word_count > max_words
            if exceed_chars:
                splits = np.ceil(char_count / max_chars)
                chars_per_split = char_count / splits
                cum_char_count = np.cumsum([len(w.word) for w in self.words[:-1]])
                indices = [
                    (np.abs(cum_char_count-(i*chars_per_split))).argmin()
                    for i in range(1, int(splits))
                ]
                if max_words is not None:
                    exceed_words = any(j-i+1 > max_words for i, j in zip([0]+indices, indices+[len(self.words)]))

            if exceed_words:
                splits = np.ceil(word_count / max_words)
                words_per_split = word_count / splits
                cum_word_count = np.array(range(1, len(self.words)+1))
                indices = [
                    np.abs(cum_word_count-(i*words_per_split)).argmin()
                    for i in range(1, int(splits))
                ]

        else:
            curr_words = 0
            curr_chars = 0
            locked_indices = []
            if include_lock:
                locked_indices = self.get_locked_indices()
            for i, word in enumerate(self.words):
                curr_words += 1
                curr_chars += len(word)
                if i != 0:
                    if (
                            max_chars is not None and curr_chars > max_chars
                            or
                            max_words is not None and curr_words > max_words
                    ) and i-1 not in locked_indices:
                        indices.append(i-1)
                        curr_words = 1
                        curr_chars = len(word)
        return indices

    def get_duration_indices(self, max_dur: float, even_split: bool = True, include_lock: bool = False):
        if not self.has_words or (total_duration := np.sum([w.duration for w in self.words])) <= max_dur:
            return []
        if even_split:
            splits = np.ceil(total_duration / max_dur)
            dur_per_split = total_duration / splits
            cum_dur = np.cumsum([w.duration for w in self.words[:-1]])
            indices = [
                (np.abs(cum_dur - (i * dur_per_split))).argmin()
                for i in range(1, int(splits))
            ]
        else:
            indices = []
            curr_total_dur = 0.0
            locked_indices = self.get_locked_indices() if include_lock else []
            for i, word in enumerate(self.words):
                curr_total_dur += word.duration
                if i != 0:
                    if curr_total_dur > max_dur and i - 1 not in locked_indices:
                        indices.append(i - 1)
                        curr_total_dur = word.duration
        return indices

    def split(self, indices: List[int]):
        if len(indices) == 0:
            return []
        if indices[-1] != len(self.words) - 1:
            indices.append(len(self.words) - 1)
        seg_copies = []
        prev_i = 0
        for i in indices:
            i += 1
            c = deepcopy(self)
            c.words = c.words[prev_i:i]
            c.update_seg_with_words()
            seg_copies.append(c)
            prev_i = i
        return seg_copies

    def set_result(self, result: 'WhisperResult'):
        self._result = result

    def get_result(self) -> Union['WhisperResult', None]:
        """
        Return outer instance of :class:`stable_whisper.result.WhisperResult` that ``self`` is a part of.
        """
        return getattr(self, '_result', None)


class WhisperResult:

    def __init__(
            self,
            result: Union[str, dict, list],
            force_order: bool = False,
            check_sorted: Union[bool, str] = True,
            show_unsorted: bool = True
    ):
        result, self.path = self._standardize_result(result)
        self.ori_dict = result.get('ori_dict') or result
        self.language = self.ori_dict.get('language')
        self._regroup_history = result.get('regroup_history', '')
        self._nonspeech_sections = result.get('nonspeech_sections', [])
        segments = deepcopy(result.get('segments', self.ori_dict.get('segments')))
        self.segments: List[Segment] = [Segment(**s) for s in segments] if segments else []
        self._forced_order = force_order
        if self._forced_order:
            self.force_order()
        self.raise_for_unsorted(check_sorted, show_unsorted)
        self.remove_no_word_segments(any(seg.has_words for seg in self.segments))
        self.update_all_segs_with_words()

    def __getitem__(self, index: int) -> Segment:
        return self.segments[index]

    def __delitem__(self, index: int):
        del self.segments[index]
        self.reassign_ids(True)

    @staticmethod
    def _standardize_result(result: Union[str, dict, list]):
        path = None
        if isinstance(result, str):
            path = result
            result = load_result(path)
        if isinstance(result, list):
            if isinstance(result[0], list):
                if not isinstance(result[0][0], dict):
                    raise NotImplementedError(f'Got list of list of {type(result[0])} but expects list of list of dict')
                result = dict(
                    segments=[
                        dict(
                            start=words[0]['start'],
                            end=words[-1]['end'],
                            text=''.join(w['word'] for w in words),
                            words=words
                        )
                        for words in result
                    ]
                )

            elif isinstance(result[0], dict):
                result = dict(segments=result)
            else:
                raise NotImplementedError(f'Got list of {type(result[0])} but expects list of list/dict')
        return result, path

    def force_order(self):
        prev_ts_end = 0
        timestamps = self.all_words_or_segments()
        for i, ts in enumerate(timestamps, 1):
            if ts.start < prev_ts_end:
                ts.start = prev_ts_end
            if ts.start > ts.end:
                if prev_ts_end > ts.end:
                    warnings.warn('Multiple consecutive timestamps are out of order. Some parts will have no duration.')
                    ts.start = ts.end
                    for j in range(i-2, -1, -1):
                        if timestamps[j].end > ts.end:
                            timestamps[j].end = ts.end
                        if timestamps[j].start > ts.end:
                            timestamps[j].start = ts.end
                else:
                    if ts.start != prev_ts_end:
                        ts.start = prev_ts_end
                    else:
                        ts.end = ts.start if i == len(timestamps) else timestamps[i].start
            prev_ts_end = ts.end
        if self.has_words:
            self.update_all_segs_with_words()

    def raise_for_unsorted(self, check_sorted: Union[bool, str] = True, show_unsorted: bool = True):
        if check_sorted is False:
            return
        all_parts = self.all_words_or_segments()
        has_words = self.has_words
        timestamps = np.array(list(chain.from_iterable((p.start, p.end) for p in all_parts)))
        if len(timestamps) > 1 and (unsorted_mask := timestamps[:-1] > timestamps[1:]).any():
            if show_unsorted:
                def get_part_info(idx):
                    curr_part = all_parts[idx]
                    seg_id = curr_part.segment_id if has_words else curr_part.id
                    word_id_str = f'Word ID: {curr_part.id}\n' if has_words else ''
                    return (
                        f'Segment ID: {seg_id}\n{word_id_str}'
                        f'Start: {curr_part.start}\nEnd: {curr_part.end}\n'
                        f'Text: "{curr_part.word if has_words else curr_part.text}"'
                    ), curr_part.start, curr_part.end

                for i, unsorted in enumerate(unsorted_mask, 2):
                    if unsorted:
                        word_id = i//2-1
                        part_info, start, end = get_part_info(word_id)
                        if i % 2 == 1:
                            next_info, next_start, _ = get_part_info(word_id+1)
                            part_info += f'\nConflict: end ({end}) > next start ({next_start})\n{next_info}'
                        else:
                            part_info += f'\nConflict: start ({start}) > end ({end})'
                        print(part_info, end='\n\n')

            data = self.to_dict()
            if check_sorted is True:
                raise UnsortedException(data=data)
            warnings.warn('Timestamps are not in ascending order. '
                          'If data is produced by Stable-ts, please submit an issue with the saved data.')
            save_as_json(data, check_sorted)

    def update_all_segs_with_words(self):
        for seg in self.segments:
            seg.update_seg_with_words()
            seg.set_result(self)

    def update_nonspeech_sections(self, silent_starts, silent_ends):
        self._nonspeech_sections = [dict(start=s, end=e) for s, e in zip(silent_starts, silent_ends)]

    def add_segments(self, index0: int, index1: int, inplace: bool = False, lock: bool = False):
        new_seg = self.segments[index0] + self.segments[index1]
        new_seg.update_seg_with_words()
        if lock and self.segments[index0].has_words:
            lock_idx = len(self.segments[index0].words)
            new_seg.words[lock_idx - 1].lock_right()
            if lock_idx < len(new_seg.words):
                new_seg.words[lock_idx].lock_left()
        if inplace:
            i0, i1 = sorted([index0, index1])
            self.segments[i0] = new_seg
            del self.segments[i1]
        return new_seg

    def rescale_time(self, scale_factor: float):
        for s in self.segments:
            s.rescale_time(scale_factor)

    def apply_min_dur(self, min_dur: float, inplace: bool = False):
        """
        Merge any word/segment with adjacent word/segment if its duration is less than ``min_dur``.
        """
        result = self if inplace else deepcopy(self)
        max_i = len(result.segments) - 1
        if max_i == 0:
            return result
        for i in reversed(range(len(result.segments))):
            if max_i == 0:
                break
            if result.segments[i].duration < min_dur:
                if i == max_i:
                    result.add_segments(i-1, i, inplace=True)
                elif i == 0:
                    result.add_segments(i, i+1, inplace=True)
                else:
                    if result.segments[i+1].duration < result.segments[i-1].duration:
                        result.add_segments(i-1, i, inplace=True)
                    else:
                        result.add_segments(i, i+1, inplace=True)
                max_i -= 1
        result.reassign_ids()
        for s in result.segments:
            s.apply_min_dur(min_dur, inplace=True)
        return result

    def offset_time(self, offset_seconds: float):
        for s in self.segments:
            s.offset_time(offset_seconds)

    def suppress_silence(
            self,
            silent_starts: np.ndarray,
            silent_ends: np.ndarray,
            min_word_dur: float = 0.1,
            word_level: bool = True,
            nonspeech_error: float = 0.3,
            use_word_position: bool = True
    ) -> "WhisperResult":
        """
        Move any start/end timestamps in silence parts of audio to the boundaries of the silence.

        Parameters
        ----------
        silent_starts : numpy.ndarray
            An array starting timestamps of silent sections of audio.
        silent_ends : numpy.ndarray
            An array ending timestamps of silent sections of audio.
        min_word_dur : float, default 0.1
            Shortest duration each word is allowed to reach for adjustments.
        word_level : bool, default False
            Whether to settings to word level timestamps.
        nonspeech_error : float, default 0.3
            Relative error of non-speech sections that appear in between a word for adjustments.
        use_word_position : bool, default True
            Whether to use position of the word in its segment to determine whether to keep end or start timestamps if
            adjustments are required. If it is the first word, keep end. Else if it is the last word, keep the start.

        Returns
        -------
        stable_whisper.result.WhisperResult
            The current instance after the changes.
        """
        for s in self.segments:
            s.suppress_silence(
                silent_starts,
                silent_ends,
                min_word_dur,
                word_level=word_level,
                nonspeech_error=nonspeech_error,
                use_word_position=use_word_position
            )

        return self

    def adjust_by_silence(
            self,
            audio: Union[torch.Tensor, np.ndarray, str, bytes],
            vad: bool = False,
            *,
            verbose: (bool, None) = False,
            sample_rate: int = None,
            vad_onnx: bool = False,
            vad_threshold: float = 0.35,
            q_levels: int = 20,
            k_size: int = 5,
            min_word_dur: float = 0.1,
            word_level: bool = True,
            nonspeech_error: float = 0.3,
            use_word_position: bool = True

    ) -> "WhisperResult":
        """
        Adjust timestamps base detected speech gaps.

        This is method combines :meth:`stable_whisper.result.WhisperResult.suppress_silence` with silence detection.

        Parameters
        ----------
        audio : str or numpy.ndarray or torch.Tensor or bytes
            Path/URL to the audio file, the audio waveform, or bytes of audio file.
        vad : bool, default False
            Whether to use Silero VAD to generate timestamp suppression mask.
            Silero VAD requires PyTorch 1.12.0+. Official repo, https://github.com/snakers4/silero-vad.
        verbose : bool or None, default False
            If ``False``, mute messages about hitting local caches. Note that the message about first download cannot be
            muted. Only applies if ``vad = True``.
        sample_rate : int, default None, meaning ``whisper.audio.SAMPLE_RATE``, 16kHZ
            The sample rate of ``audio``.
        vad_onnx : bool, default False
            Whether to use ONNX for Silero VAD.
        vad_threshold : float, default 0.35
            Threshold for detecting speech with Silero VAD. Low threshold reduces false positives for silence detection.
        q_levels : int, default 20
            Quantization levels for generating timestamp suppression mask; ignored if ``vad = true``.
            Acts as a threshold to marking sound as silent.
            Fewer levels will increase the threshold of volume at which to mark a sound as silent.
        k_size : int, default 5
            Kernel size for avg-pooling waveform to generate timestamp suppression mask; ignored if ``vad = true``.
            Recommend 5 or 3; higher sizes will reduce detection of silence.
        min_word_dur : float, default 0.1
            Shortest duration each word is allowed to reach from adjustments.
        word_level : bool, default False
            Whether to settings to word level timestamps.
        nonspeech_error : float, default 0.3
            Relative error of non-speech sections that appear in between a word for adjustments.
        use_word_position : bool, default True
            Whether to use position of the word in its segment to determine whether to keep end or start timestamps if
            adjustments are required. If it is the first word, keep end. Else if it is the last word, keep the start.

        Returns
        -------
        stable_whisper.result.WhisperResult
            The current instance after the changes.

        Notes
        -----
        This operation is already performed by :func:`stable_whisper.whisper_word_level.transcribe_stable` /
        :func:`stable_whisper.whisper_word_level.transcribe_minimal`/
        :func:`stable_whisper.non_whisper.transcribe_any` / :func:`stable_whisper.alignment.align`
        if ``suppress_silence = True``.
        """
        if vad:
            silent_timings = get_vad_silence_func(
                onnx=vad_onnx,
                verbose=verbose
            )(audio, speech_threshold=vad_threshold, sr=sample_rate)
        else:
            silent_timings = mask2timing(
                wav2mask(audio, q_levels=q_levels, k_size=k_size, sr=sample_rate)
            )
        if silent_timings is None:
            return self
        self.suppress_silence(
            *silent_timings,
            min_word_dur=min_word_dur,
            word_level=word_level,
            nonspeech_error=nonspeech_error,
            use_word_position=use_word_position
        )
        self.update_nonspeech_sections(*silent_timings)
        return self

    def adjust_by_result(
            self,
            other_result: "WhisperResult",
            min_word_dur: float = 0.1,
            verbose: bool = False
    ):
        """
        Minimize the duration of words using timestamps of another result.

        Parameters
        ----------
        other_result : "WhisperResult"
            Timing data of the same words in a WhisperResult instance.
        min_word_dur : float, default 0.1
            Prevent changes to timestamps if the resultant word duration is less than ``min_word_dur``.
        verbose : bool, default False
            Whether to print out the timestamp changes.
        """
        if not (self.has_words and other_result.has_words):
            raise NotImplementedError('This operation can only be performed on results with word timestamps')
        assert [w.word for w in self.all_words()] == [w.word for w in other_result.all_words()], \
            'The words in [other_result] do not match the current words.'
        for word, other_word in zip(self.all_words(), other_result.all_words()):
            if word.end > other_word.start:
                new_start = max(word.start, other_word.start)
                new_end = min(word.end, other_word.end)
                if new_end - new_start >= min_word_dur:
                    line = ''
                    if word.start != new_start:
                        if verbose:
                            line += f'[Start:{word.start:.3f}->{new_start:.3f}] '
                        word.start = new_start
                    if word.end != new_end:
                        if verbose:
                            line += f'[End:{word.end:.3f}->{new_end:.3f}]  '
                        word.end = new_end
                    if line:
                        print(f'{line}"{word.word}"')
        self.update_all_segs_with_words()

    def reassign_ids(self, only_segments: bool = False):
        for i, s in enumerate(self.segments):
            s.id = i
            if not only_segments:
                s.reassign_ids()

    def remove_no_word_segments(self, ignore_ori=False):
        for i in reversed(range(len(self.segments))):
            if (ignore_ori or self.segments[i].ori_has_words) and not self.segments[i].has_words:
                del self.segments[i]
        self.reassign_ids()

    def get_locked_indices(self):
        locked_indices = [i
                          for i, (left, right) in enumerate(zip(self.segments[1:], self.segments[:-1]))
                          if left.left_locked or right.right_locked]
        return locked_indices

    def get_gaps(self, as_ndarray=False):
        s_ts = np.array([s.start for s in self.segments])
        e_ts = np.array([s.end for s in self.segments])
        gap = s_ts[1:] - e_ts[:-1]
        return gap if as_ndarray else gap.tolist()

    def get_gap_indices(self, min_gap: float = 0.1):  # for merging
        if len(self.segments) < 2:
            return []
        if min_gap is None:
            min_gap = 0
        indices = (self.get_gaps(True) <= min_gap).nonzero()[0].tolist()
        return sorted(set(indices) - set(self.get_locked_indices()))

    def get_punctuation_indices(self, punctuation: Union[List[str], List[Tuple[str, str]], str]):  # for merging
        if len(self.segments) < 2:
            return []
        if isinstance(punctuation, str):
            punctuation = [punctuation]
        indices = []
        for p in punctuation:
            if isinstance(p, str):
                for i, s in enumerate(self.segments[:-1]):
                    if s.text.endswith(p):
                        indices.append(i)
                    elif i != 0 and s.text.startswith(p):
                        indices.append(i-1)
            else:
                ending, beginning = p
                indices.extend([i for i, (s0, s1) in enumerate(zip(self.segments[:-1], self.segments[1:]))
                                if s0.text.endswith(ending) and s1.text.startswith(beginning)])

        return sorted(set(indices) - set(self.get_locked_indices()))

    def all_words(self):
        return list(chain.from_iterable(s.words for s in self.segments))

    def all_words_or_segments(self):
        return self.all_words() if self.has_words else self.segments

    def all_words_by_lock(self, only_text: bool = True, by_segment: bool = False, include_single: bool = False):
        if by_segment:
            return [
                segment.words_by_lock(only_text=only_text, include_single=include_single)
                for segment in self.segments
            ]
        return _words_by_lock(self.all_words(), only_text=only_text, include_single=include_single)

    def all_tokens(self):
        return list(chain.from_iterable(s.tokens for s in self.all_words()))

    def to_dict(self):
        return dict(text=self.text,
                    segments=self.segments_to_dicts(),
                    language=self.language,
                    ori_dict=self.ori_dict,
                    regroup_history=self._regroup_history,
                    nonspeech_sections=self._nonspeech_sections)

    def segments_to_dicts(self, reverse_text: Union[bool, tuple] = False):
        return [s.to_dict(reverse_text=reverse_text) for s in self.segments]

    def _split_segments(self, get_indices, args: list = None, *, lock: bool = False, newline: bool = False):
        if args is None:
            args = []
        no_words = False
        for i in reversed(range(0, len(self.segments))):
            no_words = no_words or not self.segments[i].has_words
            indices = sorted(set(get_indices(self.segments[i], *args)))
            if not indices:
                continue
            if newline:
                if indices[-1] == len(self.segments[i].words) - 1:
                    del indices[-1]
                    if not indices:
                        continue

                for word_idx in indices:
                    if self.segments[i].words[word_idx].word.endswith('\n'):
                        continue
                    self.segments[i].words[word_idx].word += '\n'
                    if lock:
                        self.segments[i].words[word_idx].lock_right()
                        if word_idx + 1 < len(self.segments[i].words):
                            self.segments[i].words[word_idx+1].lock_left()
                self.segments[i].update_seg_with_words()
            else:
                new_segments = self.segments[i].split(indices)
                if lock:
                    for s in new_segments:
                        if s == new_segments[0]:
                            s.lock_right()
                        elif s == new_segments[-1]:
                            s.lock_left()
                        else:
                            s.lock_both()
                del self.segments[i]
                for s in reversed(new_segments):
                    self.segments.insert(i, s)
        if no_words:
            warnings.warn('Found segment(s) without word timings. These segment(s) cannot be split.')
        self.remove_no_word_segments()

    def _merge_segments(self, indices: List[int],
                        *, max_words: int = None, max_chars: int = None, is_sum_max: bool = False, lock: bool = False):
        if len(indices) == 0:
            return
        for i in reversed(indices):
            seg = self.segments[i]
            if (
                    (
                            max_words and
                            seg.has_words and
                            (
                                    (seg.word_count() + self.segments[i + 1].word_count() > max_words)
                                    if is_sum_max else
                                    (seg.word_count() > max_words and self.segments[i + 1].word_count() > max_words)
                            )
                    ) or
                    (
                            max_chars and
                            (
                                    (seg.char_count() + self.segments[i + 1].char_count() > max_chars)
                                    if is_sum_max else
                                    (seg.char_count() > max_chars and self.segments[i + 1].char_count() > max_chars)
                            )
                    )
            ):
                continue
            self.add_segments(i, i + 1, inplace=True, lock=lock)
        self.remove_no_word_segments()

    def get_content_by_time(
            self,
            time: Union[float, Tuple[float, float], dict],
            within: bool = False,
            segment_level: bool = False
    ) -> Union[List[WordTiming], List[Segment]]:
        """
        Return content in the ``time`` range.

        Parameters
        ----------
        time : float or tuple of (float, float) or dict
            Range of time to find content. For tuple of two floats, first value is the start time and second value is
            the end time. For a single float value, it is treated as both the start and end time.
        within : bool, default False
            Whether to only find content fully overlaps with ``time`` range.
        segment_level : bool, default False
            Whether to look only on the segment level and return instances of :class:`stable_whisper.result.Segment`
            instead of :class:`stable_whisper.result.WordTiming`.

        Returns
        -------
        list of stable_whisper.result.WordTiming or list of stable_whisper.result.Segment
            List of contents in the ``time`` range. The contents are instances of
            :class:`stable_whisper.result.Segment` if ``segment_level = True`` else
            :class:`stable_whisper.result.WordTiming`.
        """
        if not segment_level and not self.has_words:
            raise ValueError('Missing word timestamps in result. Use ``segment_level=True`` instead.')
        contents = self.segments if segment_level else self.all_words()
        if isinstance(time, (float, int)):
            time = [time, time]
        elif isinstance(time, dict):
            time = [time['start'], time['end']]
        start, end = time

        if within:
            def is_in_range(c):
                return start <= c.start and end >= c.end
        else:
            def is_in_range(c):
                return start <= c.end and end >= c.start

        return [c for c in contents if is_in_range(c)]

    def split_by_gap(
            self,
            max_gap: float = 0.1,
            lock: bool = False,
            newline: bool = False
    ) -> "WhisperResult":
        """
        Split (in-place) any segment where the gap between two of its words is greater than ``max_gap``.

        Parameters
        ----------
        max_gap : float, default 0.1
            Maximum second(s) allowed between two words if the same segment.
        lock : bool, default False
            Whether to prevent future splits/merges from altering changes made by this method.
        newline: bool, default False
            Whether to insert line break at the split points instead of splitting into separate segments.

        Returns
        -------
        stable_whisper.result.WhisperResult
            The current instance after the changes.
        """
        self._split_segments(lambda x: x.get_gap_indices(max_gap), lock=lock, newline=newline)
        if self._regroup_history:
            self._regroup_history += '_'
        self._regroup_history += f'sg={max_gap}+{int(lock)}+{int(newline)}'
        return self

    def merge_by_gap(
            self,
            min_gap: float = 0.1,
            max_words: int = None,
            max_chars: int = None,
            is_sum_max: bool = False,
            lock: bool = False
    ) -> "WhisperResult":
        """
        Merge (in-place) any pair of adjacent segments if the gap between them <= ``min_gap``.

        Parameters
        ----------
        min_gap : float, default 0.1
            Minimum second(s) allow between two segment.
        max_words : int, optional
            Maximum number of words allowed in each segment.
        max_chars : int, optional
            Maximum number of characters allowed in each segment.
        is_sum_max : bool, default False
            Whether ``max_words`` and ``max_chars`` is applied to the merged segment instead of the individual segments
            to be merged.
        lock : bool, default False
            Whether to prevent future splits/merges from altering changes made by this method.

        Returns
        -------
        stable_whisper.result.WhisperResult
            The current instance after the changes.
        """
        indices = self.get_gap_indices(min_gap)
        self._merge_segments(indices,
                             max_words=max_words, max_chars=max_chars, is_sum_max=is_sum_max, lock=lock)
        if self._regroup_history:
            self._regroup_history += '_'
        self._regroup_history += f'mg={min_gap}+{max_words or ""}+{max_chars or ""}+{int(is_sum_max)}+{int(lock)}'
        return self

    def split_by_punctuation(
            self,
            punctuation: Union[List[str], List[Tuple[str, str]], str],
            lock: bool = False,
            newline: bool = False,
            min_words: Optional[int] = None,
            min_chars: Optional[int] = None,
            min_dur: Optional[int] = None
    ) -> "WhisperResult":
        """
        Split (in-place) segments at words that start/end with ``punctuation``.

        Parameters
        ----------
        punctuation : list of str of list of tuple of (str, str) or str
            Punctuation(s) to split segments by.
        lock : bool, default False
            Whether to prevent future splits/merges from altering changes made by this method.
        newline : bool, default False
            Whether to insert line break at the split points instead of splitting into separate segments.
        min_words : int, optional
            Split segments with words >= ``min_words``.
        min_chars : int, optional
            Split segments with characters >= ``min_chars``.
        min_dur : int, optional
            split segments with duration (in seconds) >= ``min_dur``.

        Returns
        -------
        stable_whisper.result.WhisperResult
            The current instance after the changes.
        """
        def _over_max(x: Segment):
            return (
                    (min_words and len(x.words) >= min_words) or
                    (min_chars and x.char_count() >= min_chars) or
                    (min_dur and x.duration >= min_dur)
            )

        indices = set(s.id for s in self.segments if _over_max(s)) if any((min_words, min_chars, min_dur)) else None

        def _get_indices(x: Segment):
            return x.get_punctuation_indices(punctuation) if indices is None or x.id in indices else []

        self._split_segments(_get_indices, lock=lock, newline=newline)
        if self._regroup_history:
            self._regroup_history += '_'
        punct_str = '/'.join(p if isinstance(p, str) else '*'.join(p) for p in punctuation)
        self._regroup_history += f'sp={punct_str}+{int(lock)}+{int(newline)}'
        self._regroup_history += f'+{min_words or ""}+{min_chars or ""}+{min_dur or ""}'.rstrip('+')
        return self

    def merge_by_punctuation(
            self,
            punctuation: Union[List[str], List[Tuple[str, str]], str],
            max_words: int = None,
            max_chars: int = None,
            is_sum_max: bool = False,
            lock: bool = False
    ) -> "WhisperResult":
        """
        Merge (in-place) any two segments that has specific punctuations inbetween.

        Parameters
        ----------
        punctuation : list of str of list of tuple of (str, str) or str
            Punctuation(s) to merge segments by.
        max_words : int, optional
            Maximum number of words allowed in each segment.
        max_chars : int, optional
            Maximum number of characters allowed in each segment.
        is_sum_max : bool, default False
            Whether ``max_words`` and ``max_chars`` is applied to the merged segment instead of the individual segments
            to be merged.
        lock : bool, default False
            Whether to prevent future splits/merges from altering changes made by this method.

        Returns
        -------
        stable_whisper.result.WhisperResult
            The current instance after the changes.
        """
        indices = self.get_punctuation_indices(punctuation)
        self._merge_segments(indices,
                             max_words=max_words, max_chars=max_chars, is_sum_max=is_sum_max, lock=lock)
        if self._regroup_history:
            self._regroup_history += '_'
        punct_str = '/'.join(p if isinstance(p, str) else '*'.join(p) for p in punctuation)
        self._regroup_history += f'mp={punct_str}+{max_words or ""}+{max_chars or ""}+{int(is_sum_max)}+{int(lock)}'
        return self

    def merge_all_segments(self) -> "WhisperResult":
        """
        Merge all segments into one segment.

        Returns
        -------
        stable_whisper.result.WhisperResult
            The current instance after the changes.
        """
        if not self.segments:
            return self
        if self.has_words:
            self.segments[0].words = self.all_words()
        else:
            self.segments[0].text += ''.join(s.text for s in self.segments[1:])
            if all(s.tokens is not None for s in self.segments):
                self.segments[0].tokens += list(chain.from_iterable(s.tokens for s in self.segments[1:]))
            self.segments[0].end = self.segments[-1].end
        self.segments = [self.segments[0]]
        self.reassign_ids()
        self.update_all_segs_with_words()
        if self._regroup_history:
            self._regroup_history += '_'
        self._regroup_history += 'ms'
        return self

    def split_by_length(
            self,
            max_chars: int = None,
            max_words: int = None,
            even_split: bool = True,
            force_len: bool = False,
            lock: bool = False,
            include_lock: bool = False,
            newline: bool = False
    ) -> "WhisperResult":
        """
        Split (in-place) any segment that exceeds ``max_chars`` or ``max_words`` into smaller segments.

        Parameters
        ----------
        max_chars : int, optional
            Maximum number of characters allowed in each segment.
        max_words : int, optional
            Maximum number of words allowed in each segment.
        even_split : bool, default True
            Whether to evenly split a segment in length if it exceeds ``max_chars`` or ``max_words``.
        force_len : bool, default False
            Whether to force a constant length for each segment except the last segment.
            This will ignore all previous non-locked segment boundaries.
        lock : bool, default False
            Whether to prevent future splits/merges from altering changes made by this method.
        include_lock: bool, default False
            Whether to include previous lock before splitting based on max_words, if ``even_split = False``.
            Splitting will be done after the first non-locked word > ``max_chars`` / ``max_words``.
        newline: bool, default False
            Whether to insert line break at the split points instead of splitting into separate segments.

        Returns
        -------
        stable_whisper.result.WhisperResult
            The current instance after the changes.

        Notes
        -----
        If ``even_split = True``, segments can still exceed ``max_chars`` and locked words will be ignored to avoid
        uneven splitting.
        """
        if force_len:
            self.merge_all_segments()
        self._split_segments(
            lambda x: x.get_length_indices(
                max_chars=max_chars,
                max_words=max_words,
                even_split=even_split,
                include_lock=include_lock
            ),
            lock=lock,
            newline=newline
        )
        if self._regroup_history:
            self._regroup_history += '_'
        self._regroup_history += (f'sl={max_chars or ""}+{max_words or ""}+{int(even_split)}+{int(force_len)}'
                                  f'+{int(lock)}+{int(include_lock)}+{int(newline)}')
        return self

    def split_by_duration(
            self,
            max_dur: float,
            even_split: bool = True,
            force_len: bool = False,
            lock: bool = False,
            include_lock: bool = False,
            newline: bool = False
    ) -> "WhisperResult":
        """
        Split (in-place) any segment that exceeds ``max_dur`` into smaller segments.

        Parameters
        ----------
        max_dur : float
            Maximum duration (in seconds) per segment.
        even_split : bool, default True
            Whether to evenly split a segment in length if it exceeds ``max_dur``.
        force_len : bool, default False
            Whether to force a constant length for each segment except the last segment.
            This will ignore all previous non-locked segment boundaries.
        lock : bool, default False
            Whether to prevent future splits/merges from altering changes made by this method.
        include_lock: bool, default False
            Whether to include previous lock before splitting based on max_words, if ``even_split = False``.
            Splitting will be done after the first non-locked word > ``max_dur``.
        newline: bool, default False
            Whether to insert line break at the split points instead of splitting into separate segments.

        Returns
        -------
        stable_whisper.result.WhisperResult
            The current instance after the changes.

        Notes
        -----
        If ``even_split = True``, segments can still exceed ``max_dur`` and locked words will be ignored to avoid
        uneven splitting.
        """
        if force_len:
            self.merge_all_segments()
        self._split_segments(
            lambda x: x.get_duration_indices(
                max_dur=max_dur,
                even_split=even_split,
                include_lock=include_lock
            ),
            lock=lock,
            newline=newline
        )
        if self._regroup_history:
            self._regroup_history += '_'
        self._regroup_history += (f'sd={max_dur}+{int(even_split)}+{int(force_len)}'
                                  f'+{int(lock)}+{int(include_lock)}+{int(newline)}')
        return self

    def clamp_max(
            self,
            medium_factor: float = 2.5,
            max_dur: float = None,
            clip_start: Optional[bool] = None,
            verbose: bool = False
    ) -> "WhisperResult":
        """
        Clamp all word durations above certain value.

        This is most effective when applied before and after other regroup operations.

        Parameters
        ----------
        medium_factor : float, default 2.5
            Clamp durations above (``medium_factor`` * medium duration) per segment.
            If ``medium_factor = None/0`` or segment has less than 3 words, it will be ignored and use only ``max_dur``.
        max_dur : float, optional
            Clamp durations above ``max_dur``.
        clip_start : bool or None, default None
            Whether to clamp the start of a word. If ``None``, clamp the start of first word and end of last word per
            segment.
        verbose : bool, default False
            Whether to print out the timestamp changes.

        Returns
        -------
        stable_whisper.result.WhisperResult
            The current instance after the changes.
        """
        if not (medium_factor or max_dur):
            raise ValueError('At least one of following arguments requires non-zero value: medium_factor; max_dur')

        if not self.has_words:
            warnings.warn('Cannot clamp due to missing/no word-timestamps')
            return self

        for seg in self.segments:
            curr_max_dur = None
            if medium_factor and len(seg.words) > 2:
                durations = np.array([word.duration for word in seg.words])
                durations.sort()
                curr_max_dur = medium_factor * durations[len(durations)//2 + 1]

            if max_dur and (not curr_max_dur or curr_max_dur > max_dur):
                curr_max_dur = max_dur

            if not curr_max_dur:
                continue

            if clip_start is None:
                seg.words[0].clamp_max(curr_max_dur, clip_start=True, verbose=verbose)
                seg.words[-1].clamp_max(curr_max_dur, clip_start=False, verbose=verbose)
            else:
                for i, word in enumerate(seg.words):
                    word.clamp_max(curr_max_dur, clip_start=clip_start, verbose=verbose)

            seg.update_seg_with_words()
        if self._regroup_history:
            self._regroup_history += '_'
        self._regroup_history += f'cm={medium_factor}+{max_dur or ""}+{clip_start or ""}+{int(verbose)}'
        return self

    def lock(
            self,
            startswith: Union[str, List[str]] = None,
            endswith: Union[str, List[str]] = None,
            right: bool = True,
            left: bool = False,
            case_sensitive: bool = False,
            strip: bool = True
    ) -> "WhisperResult":
        """
        Lock words/segments with matching prefix/suffix to prevent splitting/merging.

        Parameters
        ----------
        startswith: str or list of str
            Prefixes to lock.
        endswith: str or list of str
            Suffixes to lock.
        right : bool, default True
            Whether prevent splits/merges with the next word/segment.
        left : bool, default False
            Whether prevent splits/merges with the previous word/segment.
        case_sensitive : bool, default False
            Whether to match the case of the prefixes/suffixes with the words/segments.
        strip : bool, default True
            Whether to ignore spaces before and after both words/segments and prefixes/suffixes.

        Returns
        -------
        stable_whisper.result.WhisperResult
            The current instance after the changes.
        """
        assert startswith or endswith, 'Must specify [startswith] or/and [endswith].'
        startswith = [] if startswith is None else ([startswith] if isinstance(startswith, str) else startswith)
        endswith = [] if endswith is None else ([endswith] if isinstance(endswith, str) else endswith)
        if not case_sensitive:
            startswith = [t.lower() for t in startswith]
            endswith = [t.lower() for t in endswith]
        if strip:
            startswith = [t.strip() for t in startswith]
            endswith = [t.strip() for t in endswith]
        for part in self.all_words_or_segments():
            text = part.word if hasattr(part, 'word') else part.text
            if not case_sensitive:
                text = text.lower()
            if strip:
                text = text.strip()
            for prefix in startswith:
                if text.startswith(prefix):
                    if right:
                        part.lock_right()
                    if left:
                        part.lock_left()
            for suffix in endswith:
                if text.endswith(suffix):
                    if right:
                        part.lock_right()
                    if left:
                        part.lock_left()
        if self._regroup_history:
            self._regroup_history += '_'
        startswith_str = (startswith if isinstance(startswith, str) else '/'.join(startswith)) if startswith else ""
        endswith_str = (endswith if isinstance(endswith, str) else '/'.join(endswith)) if endswith else ""
        self._regroup_history += (f'l={startswith_str}+{endswith_str}'
                                  f'+{int(right)}+{int(left)}+{int(case_sensitive)}+{int(strip)}')
        return self

    def remove_word(
            self,
            word: Union[WordTiming, Tuple[int, int]],
            reassign_ids: bool = True,
            verbose: bool = True
    ) -> 'WhisperResult':
        """
        Remove a word.

        Parameters
        ----------
        word : WordTiming or tuple of (int, int)
            Instance of :class:`stable_whisper.result.WordTiming` or tuple of (segment index, word index).
        reassign_ids : bool, default True
            Whether to reassign segment and word ids (indices) after removing ``word``.
        verbose : bool, default True
            Whether to print detail of the removed word.

        Returns
        -------
        stable_whisper.result.WhisperResult
            The current instance after the changes.
        """
        if isinstance(word, WordTiming):
            if self[word.segment_id][word.id] is not word:
                self.reassign_ids()
                if self[word.segment_id][word.id] is not word:
                    raise ValueError('word not in result')
            seg_id, word_id = word.segment_id, word.id
        else:
            seg_id, word_id = word
        if verbose:
            print(f'Removed: {self[seg_id][word_id].to_dict()}')
        del self.segments[seg_id].words[word_id]
        if not reassign_ids:
            return self
        if self[seg_id].has_words:
            self[seg_id].reassign_ids()
        else:
            self.remove_no_word_segments()
        return self

    def remove_segment(
            self,
            segment: Union[Segment, int],
            reassign_ids: bool = True,
            verbose: bool = True
    ) -> 'WhisperResult':
        """
        Remove a segment.

        Parameters
        ----------
        segment : Segment or int
            Instance :class:`stable_whisper.result.Segment` or segment index.
        reassign_ids : bool, default True
            Whether to reassign segment IDs (indices) after removing ``segment``.
        verbose : bool, default True
            Whether to print detail of the removed word.

        Returns
        -------
        stable_whisper.result.WhisperResult
            The current instance after the changes.
        """
        if isinstance(segment, Segment):
            if self[segment.id] is not segment:
                self.reassign_ids()
                if self[segment.id] is not segment:
                    raise ValueError('segment not in result')
            segment = segment.id
        if verbose:
            print(f'Removed: [id:{self[segment].id}] {self[segment].to_display_str(True)}')
        del self.segments[segment]
        if not reassign_ids:
            return self
        self.reassign_ids(True)
        return self

    def remove_repetition(
            self,
            max_words: int = 1,
            case_sensitive: bool = False,
            strip: bool = True,
            ignore_punctuations: str = "\"',.?!",
            extend_duration: bool = True,
            verbose: bool = True
    ) -> 'WhisperResult':
        """
        Remove words that repeat consecutively.

        Parameters
        ----------
        max_words : int
            Maximum number of words to look for consecutively.
        case_sensitive : bool, default False
            Whether the case of words need to match to be considered as repetition.
        strip : bool, default True
            Whether to ignore spaces before and after each word.
        ignore_punctuations : bool, default '"',.?!'
            Ending punctuations to ignore.
        extend_duration: bool, default True
            Whether to extend the duration of the previous word to cover the duration of the repetition.
        verbose: bool, default True
            Whether to print detail of the removed repetitions.

        Returns
        -------
        stable_whisper.result.WhisperResult
            The current instance after the changes.
        """
        if not self.has_words:
            return self

        for count in range(1, max_words + 1):
            all_words = self.all_words()
            if len(all_words) < 2:
                return self
            all_words_str = [w.word for w in all_words]
            if strip:
                all_words_str = [w.strip() for w in all_words_str]
            if ignore_punctuations:
                ptn = f'[{ignore_punctuations}]+$'
                all_words_str = [re.sub(ptn, '', w) for w in all_words_str]
            if not case_sensitive:
                all_words_str = [w.lower() for w in all_words_str]
            next_i = None
            changes = []
            for i in reversed(range(count*2, len(all_words_str)+1)):
                if next_i is not None:
                    if next_i != i:
                        continue
                    else:
                        next_i = None
                s = i - count
                if all_words_str[s - count:s] != all_words_str[s:i]:
                    continue
                next_i = s
                if extend_duration:
                    all_words[s-1].end = all_words[i-1].end
                temp_changes = []
                for j in reversed(range(s, i)):
                    if verbose:
                        temp_changes.append(f'- {all_words[j].to_dict()}')
                    self.remove_word(all_words[j], False, verbose=False)
                if temp_changes:
                    changes.append(
                        f'Remove: [{format_timestamp(all_words[s].start)} -> {format_timestamp(all_words[i-1].end)}] '
                        + ''.join(_w.word for _w in all_words[s:i]) + '\n'
                        + '\n'.join(reversed(temp_changes)) + '\n'
                    )
                for i0, i1 in zip(range(s - count, s), range(s, i)):
                    if len(all_words[i0].word) < len(all_words[i1].word):
                        all_words[i1].start = all_words[i0].start
                        all_words[i1].end = all_words[i0].end
                        _sid, _wid = all_words[i0].segment_id, all_words[i0].id
                        self.segments[_sid].words[_wid] = all_words[i1]

            if changes:
                print('\n'.join(reversed(changes)))

            self.remove_no_word_segments()
        self.update_all_segs_with_words()

        return self

    def remove_words_by_str(
            self,
            words: Union[str, List[str], None],
            case_sensitive: bool = False,
            strip: bool = True,
            ignore_punctuations: str = "\"',.?!",
            min_prob: float = None,
            filters: Callable = None,
            verbose: bool = True
    ) -> 'WhisperResult':
        """
        Remove words that match ``words``.

        Parameters
        ----------
        words : str or list of str or None
            A word or list of words to remove.``None`` for all words to be passed into ``filters``.
        case_sensitive : bool, default False
            Whether the case of words need to match to be considered as repetition.
        strip : bool, default True
            Whether to ignore spaces before and after each word.
        ignore_punctuations : bool, default '"',.?!'
            Ending punctuations to ignore.
        min_prob : float, optional
            Acts as the first filter the for the words that match ``words``. Words with probability < ``min_prob`` will
            be removed if ``filters`` is ``None``, else pass the words into ``filters``. Words without probability will
            be treated as having probability < ``min_prob``.
        filters : Callable, optional
            A function that takes an instance of :class:`stable_whisper.result.WordTiming` as its only argument.
            This function is custom filter for the words that match ``words`` and were not caught by ``min_prob``.
        verbose:
            Whether to print detail of the removed words.

        Returns
        -------
        stable_whisper.result.WhisperResult
            The current instance after the changes.
        """
        if not self.has_words:
            return self
        if isinstance(words, str):
            words = [words]
        all_words = self.all_words()
        all_words_str = [w.word for w in all_words]
        if strip:
            all_words_str = [w.strip() for w in all_words_str]
            words = [w.strip() for w in words]
        if ignore_punctuations:
            ptn = f'[{ignore_punctuations}]+$'
            all_words_str = [re.sub(ptn, '', w) for w in all_words_str]
            words = [re.sub(ptn, '', w) for w in words]
        if not case_sensitive:
            all_words_str = [w.lower() for w in all_words_str]
            words = [w.lower() for w in words]

        changes = []
        for i, w in reversed(list(enumerate(all_words_str))):
            if not (words is None or any(w == _w for _w in words)):
                continue
            if (
                    (min_prob is None or all_words[i].probability is None or min_prob > all_words[i].probability) and
                    (filters is None or filters(all_words[i]))
            ):
                if verbose:
                    changes.append(f'Removed: {all_words[i].to_dict()}')
                self.remove_word(all_words[i], False, verbose=False)
        if changes:
            print('\n'.join(reversed(changes)))
        self.remove_no_word_segments()
        self.update_all_segs_with_words()

        return self

    def fill_in_gaps(
            self,
            other_result: Union['WhisperResult', str],
            min_gap: float = 0.1,
            case_sensitive: bool = False,
            strip: bool = True,
            ignore_punctuations: str = "\"',.?!",
            verbose: bool = True
    ) -> 'WhisperResult':
        """
        Fill in segment gaps larger than ``min_gap`` with content from ``other_result`` at the times of gaps.

        Parameters
        ----------
        other_result : WhisperResult or str
            Another transcription result as an instance of :class:`stable_whisper.result.WhisperResult` or path to the
            JSON of the result.
        min_gap : float, default 0.1
            The minimum seconds of a gap between segments that must be exceeded to be filled in.
        case_sensitive : bool, default False
            Whether to consider the case of the first and last word of the gap to determine overlapping words to remove
            before filling in.
        strip : bool, default True
            Whether to ignore spaces before and after the first and last word of the gap to determine overlapping words
            to remove before filling in.
        ignore_punctuations : bool, default '"',.?!'
            Ending punctuations to ignore in the first and last word of the gap to determine overlapping words to
            remove before filling in.
        verbose:
            Whether to print detail of the filled content.

        Returns
        -------
        stable_whisper.result.WhisperResult
            The current instance after the changes.
        """
        if len(self.segments) < 2:
            return self
        if isinstance(other_result, str):
            other_result = WhisperResult(other_result)

        if strip:
            def strip_space(w):
                return w.strip()
        else:
            def strip_space(w):
                return w

        if ignore_punctuations:
            ptn = f'[{ignore_punctuations}]+$'

            def strip_punctuations(w):
                return re.sub(ptn, '', strip_space(w))
        else:
            strip_punctuations = strip_space

        if case_sensitive:
            strip = strip_punctuations
        else:
            def strip(w):
                return strip_punctuations(w).lower()

        seg_pairs = list(enumerate(zip(self.segments[:-1], self.segments[1:])))
        seg_pairs.insert(0, (-1, (None, self.segments[0])))
        seg_pairs.append((seg_pairs[-1][0]+1, (self.segments[-1], None)))

        changes = []
        for i, (seg0, seg1) in reversed(seg_pairs):
            first_word = None if seg0 is None else seg0.words[-1]
            last_word = None if seg1 is None else seg1.words[0]
            start = (other_result[0].start if first_word is None else first_word.end)
            end = other_result[-1].end if last_word is None else last_word.start
            if end - start <= min_gap:
                continue
            gap_words = other_result.get_content_by_time((start, end))
            if first_word is not None and gap_words and strip(first_word.word) == strip(gap_words[0].word):
                first_word.end = gap_words[0].end
                gap_words = gap_words[1:]
            if last_word is not None and gap_words and strip(last_word.word) == strip(gap_words[-1].word):
                last_word.start = gap_words[-1].start
                gap_words = gap_words[:-1]
            if not gap_words:
                continue
            if last_word is not None and last_word.start < gap_words[-1].end:
                last_word.start = gap_words[-1].end
            new_segments = [other_result[gap_words[0].segment_id].copy([])]
            for j, new_word in enumerate(gap_words):
                new_word = deepcopy(new_word)
                if j == 0 and first_word is not None and first_word.end > gap_words[0].start:
                    new_word.start = first_word.end
                if new_segments[-1].id != new_word.segment_id:
                    new_segments.append(other_result[new_word.segment_id].copy([]))
                new_segments[-1].words.append(new_word)
            if verbose:
                changes.append('\n'.join('Added: ' + s.to_display_str(True) for s in new_segments))
            self.segments = self.segments[:i+1] + new_segments + self.segments[i+1:]
        if changes:
            print('\n'.join(reversed(changes)))
        self.reassign_ids()
        self.update_all_segs_with_words()

        return self

    def regroup(
            self,
            regroup_algo: Union[str, bool] = None,
            verbose: bool = False,
            only_show: bool = False
    ) -> "WhisperResult":
        """
        Regroup (in-place) words into segments.

        Parameters
        ----------
        regroup_algo: str or bool, default 'da'
             String representation of a custom regrouping algorithm or ``True`` use to the default algorithm 'da'.
        verbose : bool, default False
            Whether to show all the methods and arguments parsed from ``regroup_algo``.
        only_show : bool, default False
            Whether to show the all methods and arguments parsed from ``regroup_algo`` without running the methods

        Returns
        -------
        stable_whisper.result.WhisperResult
            The current instance after the changes.

        Notes
        -----
        Syntax for string representation of custom regrouping algorithm.
            Method keys:
                sg: split_by_gap
                sp: split_by_punctuation
                sl: split_by_length
                sd: split_by_duration
                mg: merge_by_gap
                mp: merge_by_punctuation
                ms: merge_all_segment
                cm: clamp_max
                l: lock
                us: unlock_all_segments
                da: default algorithm (cm_sp=.* /。/?/?/,* /,_sg=.5_mg=.3+3_sp=.* /。/?/?)
                rw: remove_word
                rs: remove_segment
                rp: remove_repetition
                rws: remove_words_by_str
                fg: fill_in_gaps
            Metacharacters:
                = separates a method key and its arguments (not used if no argument)
                _ separates method keys (after arguments if there are any)
                + separates arguments for a method key
                / separates an argument into list of strings
                * separates an item in list of strings into a nested list of strings
            Notes:
            -arguments are parsed positionally
            -if no argument is provided, the default ones will be used
            -use 1 or 0 to represent True or False
            Example 1:
                merge_by_gap(.2, 10, lock=True)
                mg=.2+10+++1
                Note: [lock] is the 5th argument hence the 2 missing arguments inbetween the three + before 1
            Example 2:
                split_by_punctuation([('.', ' '), '。', '?', '?'], True)
                sp=.* /。/?/?+1
            Example 3:
                merge_all_segments().split_by_gap(.5).merge_by_gap(.15, 3)
                ms_sg=.5_mg=.15+3
        """
        if regroup_algo is False:
            return self
        if regroup_algo is None or regroup_algo is True:
            regroup_algo = 'da'

        for method, kwargs, msg in self.parse_regroup_algo(regroup_algo, include_str=verbose or only_show):
            if msg:
                print(msg)
            if not only_show:
                method(**kwargs)

        return self

    def parse_regroup_algo(self, regroup_algo: str, include_str: bool = True) -> List[Tuple[Callable, dict, str]]:
        methods = dict(
            sg=self.split_by_gap,
            sp=self.split_by_punctuation,
            sl=self.split_by_length,
            sd=self.split_by_duration,
            mg=self.merge_by_gap,
            mp=self.merge_by_punctuation,
            ms=self.merge_all_segments,
            cm=self.clamp_max,
            us=self.unlock_all_segments,
            l=self.lock,
            rw=self.remove_word,
            rs=self.remove_segment,
            rp=self.remove_repetition,
            rws=self.remove_words_by_str,
            fg=self.fill_in_gaps,
        )
        if not regroup_algo:
            return []

        calls = regroup_algo.split('_')
        if 'da' in calls:
            default_calls = 'cm_sp=.* /。/?/?/,* /,_sg=.5_mg=.3+3_sp=.* /。/?/?'.split('_')
            calls = chain.from_iterable(default_calls if method == 'da' else [method] for method in calls)
        operations = []
        for method in calls:
            method, args = method.split('=', maxsplit=1) if '=' in method else (method, '')
            if method not in methods:
                raise NotImplementedError(f'{method} is not one of the available methods: {tuple(methods.keys())}')
            args = [] if len(args) == 0 else list(map(str_to_valid_type, args.split('+')))
            kwargs = {k: v for k, v in zip(methods[method].__code__.co_varnames[1:], args) if v is not None}
            if include_str:
                kwargs_str = ', '.join(f'{k}="{v}"' if isinstance(v, str) else f'{k}={v}' for k, v in kwargs.items())
                op_str = f'{methods[method].__name__}({kwargs_str})'
            else:
                op_str = None
            operations.append((methods[method], kwargs, op_str))

        return operations

    def find(self, pattern: str, word_level=True, flags=None) -> "WhisperResultMatches":
        """
        Find segments/words and timestamps with regular expression.

        Parameters
        ----------
        pattern : str
            RegEx pattern to search for.
        word_level : bool, default True
            Whether to search at word-level.
        flags : optional
            RegEx flags.

        Returns
        -------
        stable_whisper.result.WhisperResultMatches
            An instance of :class:`stable_whisper.result.WhisperResultMatches` with word/segment that match ``pattern``.
        """
        return WhisperResultMatches(self).find(pattern, word_level=word_level, flags=flags)

    @property
    def text(self):
        return ''.join(s.text for s in self.segments)

    @property
    def regroup_history(self):
        # same syntax as ``regroup_algo`` for :meth:``result.WhisperResult.regroup`
        return self._regroup_history

    @property
    def nonspeech_sections(self):
        return self._nonspeech_sections

    def show_regroup_history(self):
        """
        Print details of all regrouping operations that been performed on data.
        """
        if not self._regroup_history:
            print('Result has no history.')
        for *_, msg in self.parse_regroup_algo(self._regroup_history):
            print(f'.{msg}')

    def __len__(self):
        return len(self.segments)

    def unlock_all_segments(self):
        for s in self.segments:
            s.unlock_all_words()
        return self

    def reset(self):
        """
        Restore all values to that at initialization.
        """
        self.language = self.ori_dict.get('language')
        self._regroup_history = ''
        segments = self.ori_dict.get('segments')
        self.segments: List[Segment] = [Segment(**s) for s in segments] if segments else []
        if self._forced_order:
            self.force_order()
        self.remove_no_word_segments(any(seg.has_words for seg in self.segments))
        self.update_all_segs_with_words()

    @property
    def has_words(self):
        return all(seg.has_words for seg in self.segments)

    to_srt_vtt = result_to_srt_vtt
    to_ass = result_to_ass
    to_tsv = result_to_tsv
    to_txt = result_to_txt
    save_as_json = save_as_json


class SegmentMatch:

    def __init__(
            self,
            segments: Union[List[Segment], Segment],
            _word_indices: List[List[int]] = None,
            _text_match: str = None
    ):
        self.segments = [segments] if isinstance(segments, Segment) else segments
        self.word_indices = [] if _word_indices is None else _word_indices
        self.words = [self.segments[i].words[j] for i, indices in enumerate(self.word_indices) for j in indices]
        if len(self.words) != 0:
            self.text = ''.join(
                self.segments[i].words[j].word
                for i, indices in enumerate(self.word_indices)
                for j in indices
            )
        else:
            self.text = ''.join(seg.text for seg in self.segments)
        self.text_match = _text_match

    @property
    def start(self):
        return (
            self.words[0].start
            if len(self.words) != 0 else
            (self.segments[0].start if len(self.segments) != 0 else None)
        )

    @property
    def end(self):
        return (
            self.words[-1].end
            if len(self.words) != 0 else
            (self.segments[-1].end if len(self.segments) != 0 else None)
        )

    def __len__(self):
        return len(self.segments)

    def __repr__(self):
        return self.__dict__.__repr__()

    def __str__(self):
        return self.__dict__.__str__()


class WhisperResultMatches:
    """
    RegEx matches for WhisperResults.
    """
    # Use WhisperResult.find() instead of instantiating this class directly.
    def __init__(
            self,
            matches: Union[List[SegmentMatch], WhisperResult],
            _segment_indices: List[List[int]] = None
    ):
        if isinstance(matches, WhisperResult):
            self.matches = list(map(SegmentMatch, matches.segments))
            self._segment_indices = [[i] for i in range(len(matches.segments))]
        else:
            self.matches = matches
            assert _segment_indices is not None
            assert len(self.matches) == len(_segment_indices)
            assert all(len(match.segments) == len(_segment_indices[i]) for i, match in enumerate(self.matches))
            self._segment_indices = _segment_indices

    @property
    def segment_indices(self):
        return self._segment_indices

    def _curr_seg_groups(self) -> List[List[Tuple[int, Segment]]]:
        seg_groups, curr_segs = [], []
        curr_max = -1
        for seg_indices, match in zip(self._segment_indices, self.matches):
            for i, seg in zip(sorted(seg_indices), match.segments):
                if i > curr_max:
                    curr_segs.append((i, seg))
                    if i - 1 != curr_max:
                        seg_groups.append(curr_segs)
                        curr_segs = []
                    curr_max = i

        if curr_segs:
            seg_groups.append(curr_segs)
        return seg_groups

    def find(self, pattern: str, word_level=True, flags=None) -> "WhisperResultMatches":
        """
        Find segments/words and timestamps with regular expression.

        Parameters
        ----------
        pattern : str
            RegEx pattern to search for.
        word_level : bool, default True
            Whether to search at word-level.
        flags : optional
            RegEx flags.

        Returns
        -------
        stable_whisper.result.WhisperResultMatches
            An instance of :class:`stable_whisper.result.WhisperResultMatches` with word/segment that match ``pattern``.
        """

        seg_groups = self._curr_seg_groups()
        matches: List[SegmentMatch] = []
        match_seg_indices: List[List[int]] = []
        if word_level:
            if not all(all(seg.has_words for seg in match.segments) for match in self.matches):
                warnings.warn('Cannot perform word-level search with segment(s) missing word timestamps.')
                word_level = False

        for segs in seg_groups:
            if word_level:
                idxs = list(chain.from_iterable(
                    [(i, j)]*len(word.word) for (i, seg) in segs for j, word in enumerate(seg.words)
                ))
                text = ''.join(word.word for (_, seg) in segs for word in seg.words)
            else:
                idxs = list(chain.from_iterable([(i, None)]*len(seg.text) for (i, seg) in segs))
                text = ''.join(seg.text for (_, seg) in segs)
            assert len(idxs) == len(text)
            for curr_match in re.finditer(pattern, text, flags=flags or 0):
                start, end = curr_match.span()
                curr_idxs = idxs[start: end]
                curr_seg_idxs = sorted(set(i[0] for i in curr_idxs))
                if word_level:
                    curr_word_idxs = [
                        sorted(set(j for i, j in curr_idxs if i == seg_idx))
                        for seg_idx in curr_seg_idxs
                    ]
                else:
                    curr_word_idxs = None
                matches.append(SegmentMatch(
                    segments=[s for i, s in segs if i in curr_seg_idxs],
                    _word_indices=curr_word_idxs,
                    _text_match=curr_match.group()
                ))
                match_seg_indices.append(curr_seg_idxs)
        return WhisperResultMatches(matches, match_seg_indices)

    def __len__(self):
        return len(self.matches)

    def __bool__(self):
        return self.__len__() != 0

    def __getitem__(self, idx):
        return self.matches[idx]