File size: 10,917 Bytes
8718761 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import subprocess
import warnings
import ffmpeg
import torch
import torchaudio
import numpy as np
from typing import Union, Optional
from whisper.audio import SAMPLE_RATE
def is_ytdlp_available():
return subprocess.run('yt-dlp -h', shell=True, capture_output=True).returncode == 0
def _load_file(file: Union[str, bytes], verbose: bool = False, only_ffmpeg: bool = False):
if isinstance(file, str) and '://' in file:
if is_ytdlp_available():
verbosity = ' -q' if verbose is None else (' --progress' if verbose else ' --progress -q')
p = subprocess.run(
f'yt-dlp "{file}" -f ba/w -I 1{verbosity} -o -',
shell=True,
stdout=subprocess.PIPE
)
if len(p.stdout) == 0:
raise RuntimeError(f'Failed to download media from "{file}" with yt-dlp')
return p.stdout
else:
warnings.warn('URL detected but yt-dlp not available. '
'To handle a greater variety of URLs (i.e. non-direct links), '
'install yt-dlp, \'pip install yt-dlp\' (repo: https://github.com/yt-dlp/yt-dlp).')
if not only_ffmpeg:
if is_ytdlp_available():
verbosity = ' -q' if verbose is None else (' --progress' if verbose else ' --progress -q')
p = subprocess.run(
f'yt-dlp "{file}" -f ba/w -I 1{verbosity} -o -',
shell=True,
stdout=subprocess.PIPE
)
if p.returncode != 0 or len(p.stdout) == 0:
raise RuntimeError(f'Failed to download media from "{file}" with yt-dlp')
return p.stdout
else:
warnings.warn('URL detected but yt-dlp not available. '
'To handle a greater variety of URLs (i.e. non-direct links), '
'install yt-dlp, \'pip install yt-dlp\' (repo: https://github.com/yt-dlp/yt-dlp).')
return file
# modified version of whisper.audio.load_audio
def load_audio(file: Union[str, bytes], sr: int = SAMPLE_RATE, verbose: bool = True, only_ffmpeg: bool = False):
"""
Open an audio file and read as mono waveform then resamples as necessary.
Parameters
----------
file : str or bytes
The audio file to open, bytes of file, or URL to audio/video.
sr : int, default ``whisper.model.SAMPLE_RATE``
The sample rate to resample the audio if necessary.
verbose : bool, default True
Whether to print yt-dlp log.
only_ffmpeg : bool, default False
Whether to use only FFmpeg (instead of yt-dlp) for URls.
Returns
-------
numpy.ndarray
A array containing the audio waveform in float32.
"""
file = _load_file(file, verbose=verbose, only_ffmpeg=only_ffmpeg)
if isinstance(file, bytes):
inp, file = file, 'pipe:'
else:
inp = None
try:
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
out, _ = (
ffmpeg.input(file, threads=0)
.output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr)
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True, input=inp)
)
except ffmpeg.Error as e:
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
def voice_freq_filter(wf: (torch.Tensor, np.ndarray), sr: int,
upper_freq: int = None,
lower_freq: int = None) -> torch.Tensor:
if isinstance(wf, np.ndarray):
wf = torch.from_numpy(wf)
if upper_freq is None:
upper_freq = 5000
if lower_freq is None:
lower_freq = 200
assert upper_freq > lower_freq, f'upper_freq {upper_freq} must but greater than lower_freq {lower_freq}'
return torchaudio.functional.highpass_biquad(torchaudio.functional.lowpass_biquad(wf, sr, upper_freq),
sr,
lower_freq)
def is_demucs_available():
from importlib.util import find_spec
if find_spec('demucs') is None:
raise ModuleNotFoundError("Please install Demucs; "
"'pip install -U demucs' or "
"'pip install -U git+https://github.com/facebookresearch/demucs#egg=demucs'; "
"Official Demucs repo: https://github.com/facebookresearch/demucs")
def load_demucs_model():
is_demucs_available()
from demucs.pretrained import get_model_from_args
return get_model_from_args(type('args', (object,), dict(name='htdemucs', repo=None))).cpu().eval()
def demucs_audio(audio: (torch.Tensor, str),
input_sr: int = None,
output_sr: int = None,
model=None,
device=None,
verbose: bool = True,
track_name: str = None,
save_path: str = None,
**demucs_options) -> torch.Tensor:
"""
Isolates vocals / remove noise from ``audio`` with Demucs.
Official repo, https://github.com/facebookresearch/demucs.
"""
if model is None:
model = load_demucs_model()
else:
is_demucs_available()
from demucs.apply import apply_model
if track_name:
track_name = f'"{track_name}"'
if isinstance(audio, (str, bytes)):
if isinstance(audio, str) and not track_name:
track_name = f'"{audio}"'
audio = torch.from_numpy(load_audio(audio, model.samplerate))
elif input_sr != model.samplerate:
if input_sr is None:
raise ValueError('No [input_sr] specified for audio tensor.')
audio = torchaudio.functional.resample(audio,
orig_freq=input_sr,
new_freq=model.samplerate)
if not track_name:
track_name = 'audio track'
audio_dims = audio.dim()
if audio_dims == 1:
audio = audio[None, None].repeat_interleave(2, -2)
else:
if audio.shape[-2] == 1:
audio = audio.repeat_interleave(2, -2)
if audio_dims < 3:
audio = audio[None]
if 'mix' in demucs_options:
audio = demucs_options.pop('mix')
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
vocals_idx = model.sources.index('vocals')
if verbose:
print(f'Isolating vocals from {track_name}')
apply_kwarg = dict(
model=model,
mix=audio,
device=device,
split=True,
overlap=.25,
progress=verbose is not None,
)
apply_kwarg.update(demucs_options)
vocals = apply_model(
**apply_kwarg
)[0, vocals_idx].mean(0)
if device != 'cpu':
torch.cuda.empty_cache()
if output_sr is not None and model.samplerate != output_sr:
vocals = torchaudio.functional.resample(vocals,
orig_freq=model.samplerate,
new_freq=output_sr)
if save_path is not None:
if isinstance(save_path, str) and not save_path.lower().endswith('.wav'):
save_path += '.wav'
torchaudio.save(save_path, vocals[None], output_sr or model.samplerate)
print(f'Saved: {save_path}')
return vocals
def get_samplerate(audiofile: (str, bytes)) -> (int, None):
import re
if isinstance(audiofile, str):
metadata = subprocess.run(f'ffmpeg -i {audiofile}', capture_output=True, shell=True).stderr.decode()
else:
p = subprocess.Popen(f'ffmpeg -i -', stderr=subprocess.PIPE, stdin=subprocess.PIPE, shell=True)
try:
p.stdin.write(audiofile)
except BrokenPipeError:
pass
finally:
metadata = p.communicate()[-1]
if metadata is not None:
metadata = metadata.decode()
sr = re.findall(r'\n.+Stream.+Audio.+\D+(\d+) Hz', metadata)
if sr:
return int(sr[0])
def prep_audio(
audio: Union[str, np.ndarray, torch.Tensor, bytes],
demucs: Union[bool, torch.nn.Module] = False,
demucs_options: dict = None,
only_voice_freq: bool = False,
only_ffmpeg: bool = False,
verbose: Optional[bool] = False,
sr: int = None
) -> torch.Tensor:
"""
Converts input audio of many types into a mono waveform as a torch.Tensor.
Parameters
----------
audio : str or numpy.ndarray or torch.Tensor or bytes
Path/URL to the audio file, the audio waveform, or bytes of audio file.
If audio is :class:`numpy.ndarray` or :class:`torch.Tensor`, the audio must be already at sampled to 16kHz.
demucs : bool or torch.nn.Module, default False
Whether to preprocess ``audio`` with Demucs to isolate vocals / remove noise. Set ``demucs`` to an instance of
a Demucs model to avoid reloading the model for each run.
Demucs must be installed to use. Official repo, https://github.com/facebookresearch/demucs.
demucs_options : dict, optional
Options to use for :func:`stable_whisper.audio.demucs_audio`.
only_voice_freq : bool, default False
Whether to only use sound between 200 - 5000 Hz, where majority of human speech are.
sr : int, default None, meaning ``whisper.audio.SAMPLE_RATE``, 16kHZ
The sample rate of ``audio``.
verbose : bool, default False
Whether to print yt-dlp log.
only_ffmpeg: bool, default False
Whether to use only FFmpeg (and not yt-dlp) for URls.
Returns
-------
torch.Tensor
A mono waveform.
"""
if not sr:
sr = SAMPLE_RATE
if isinstance(audio, (str, bytes)):
if demucs:
demucs_kwargs = dict(
audio=audio,
output_sr=sr,
verbose=verbose,
)
demucs_kwargs.update(demucs_options or {})
audio = demucs_audio(**demucs_kwargs)
else:
audio = torch.from_numpy(load_audio(audio, sr=sr, verbose=verbose, only_ffmpeg=only_ffmpeg))
else:
if isinstance(audio, np.ndarray):
audio = torch.from_numpy(audio)
if demucs:
demucs_kwargs = dict(
audio=audio,
input_sr=sr,
output_sr=sr,
verbose=verbose,
)
demucs_kwargs.update(demucs_options or {})
audio = demucs_audio(**demucs_kwargs)
if only_voice_freq:
audio = voice_freq_filter(audio, sr)
return audio
|