File size: 59,249 Bytes
8718761 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 |
import copy
import re
import warnings
import torch
import numpy as np
from tqdm import tqdm
from typing import TYPE_CHECKING, Union, List, Callable, Optional, Tuple
import whisper
from whisper.audio import (
SAMPLE_RATE, N_FRAMES, N_SAMPLES, N_FFT, pad_or_trim, log_mel_spectrogram, FRAMES_PER_SECOND, CHUNK_LENGTH
)
from .result import WhisperResult, Segment
from .timing import add_word_timestamps_stable, split_word_tokens
from .audio import prep_audio
from .utils import safe_print, format_timestamp
from .whisper_compatibility import warn_compatibility_issues, get_tokenizer
from .stabilization import get_vad_silence_func, wav2mask, mask2timing
if TYPE_CHECKING:
from whisper.model import Whisper
__all__ = ['align', 'refine', 'locate']
def align(
model: "Whisper",
audio: Union[str, np.ndarray, torch.Tensor, bytes],
text: Union[str, List[int], WhisperResult],
language: str = None,
*,
verbose: Optional[bool] = False,
regroup: bool = True,
suppress_silence: bool = True,
suppress_word_ts: bool = True,
use_word_position: bool = True,
min_word_dur: bool = 0.1,
nonspeech_error: float = 0.3,
q_levels: int = 20,
k_size: int = 5,
vad: bool = False,
vad_threshold: float = 0.35,
vad_onnx: bool = False,
demucs: Union[bool, torch.nn.Module] = False,
demucs_output: str = None,
demucs_options: dict = None,
only_voice_freq: bool = False,
prepend_punctuations: str = "\"'“¿([{-",
append_punctuations: str = "\"'.。,,!!??::”)]}、",
progress_callback: Callable = None,
ignore_compatibility: bool = False,
remove_instant_words: bool = False,
token_step: int = 100,
original_split: bool = False,
word_dur_factor: Optional[float] = 2.0,
max_word_dur: Optional[float] = 3.0,
nonspeech_skip: Optional[float] = 3.0,
fast_mode: bool = False,
tokenizer: "Tokenizer" = None
) -> Union[WhisperResult, None]:
"""
Align plain text or tokens with audio at word-level.
Since this is significantly faster than transcribing, it is a more efficient method for testing various settings
without re-transcribing. This is also useful for timing a more correct transcript than one that Whisper can produce.
Parameters
----------
model : "Whisper"
The Whisper ASR model modified instance
audio : str or numpy.ndarray or torch.Tensor or bytes
Path/URL to the audio file, the audio waveform, or bytes of audio file.
If audio is :class:`numpy.ndarray` or :class:`torch.Tensor`, the audio must be already at sampled to 16kHz.
text : str or list of int or stable_whisper.result.WhisperResult
String of plain-text, list of tokens, or instance of :class:`stable_whisper.result.WhisperResult`.
language : str, default None, uses ``language`` in ``text`` if it is a :class:`stable_whisper.result.WhisperResult`
Language of ``text``. Required if ``text`` does not contain ``language``.
remove_instant_words : bool, default False
Whether to truncate any words with zero duration.
token_step : int, default 100
Max number of tokens to align each pass. Use higher values to reduce chance of misalignment.
original_split : bool, default False
Whether to preserve the original segment groupings. Segments are spit by line break if ``text`` is plain-text.
max_word_dur : float or None, default 3.0
Global maximum word duration in seconds. Re-align words that exceed the global maximum word duration.
word_dur_factor : float or None, default 2.0
Factor to compute the Local maximum word duration, which is ``word_dur_factor`` * local medium word duration.
Words that need re-alignment, are re-algined with duration <= local/global maximum word duration.
nonspeech_skip : float or None, default 3.0
Skip non-speech sections that are equal or longer than this duration in seconds. Disable skipping if ``None``.
fast_mode : bool, default False
Whether to speed up alignment by re-alignment with local/global maximum word duration.
``True`` tends produce better timestamps when ``text`` is accurate and there are no large speechless gaps.
tokenizer : "Tokenizer", default None, meaning a new tokenizer is created according ``language`` and ``model``
A tokenizer to used tokenizer text and detokenize tokens.
verbose : bool or None, default False
Whether to display the text being decoded to the console.
Displays all the details if ``True``. Displays progressbar if ``False``. Display nothing if ``None``.
regroup : bool or str, default True, meaning the default regroup algorithm
String for customizing the regrouping algorithm. False disables regrouping.
Ignored if ``word_timestamps = False``.
suppress_silence : bool, default True
Whether to enable timestamps adjustments based on the detected silence.
suppress_word_ts : bool, default True
Whether to adjust word timestamps based on the detected silence. Only enabled if ``suppress_silence = True``.
use_word_position : bool, default True
Whether to use position of the word in its segment to determine whether to keep end or start timestamps if
adjustments are required. If it is the first word, keep end. Else if it is the last word, keep the start.
q_levels : int, default 20
Quantization levels for generating timestamp suppression mask; ignored if ``vad = true``.
Acts as a threshold to marking sound as silent.
Fewer levels will increase the threshold of volume at which to mark a sound as silent.
k_size : int, default 5
Kernel size for avg-pooling waveform to generate timestamp suppression mask; ignored if ``vad = true``.
Recommend 5 or 3; higher sizes will reduce detection of silence.
demucs : bool or torch.nn.Module, default False
Whether to preprocess ``audio`` with Demucs to isolate vocals / remove noise. Set ``demucs`` to an instance of
a Demucs model to avoid reloading the model for each run.
Demucs must be installed to use. Official repo, https://github.com/facebookresearch/demucs.
demucs_output : str, optional
Path to save the vocals isolated by Demucs as WAV file. Ignored if ``demucs = False``.
Demucs must be installed to use. Official repo, https://github.com/facebookresearch/demucs.
demucs_options : dict, optional
Options to use for :func:`stable_whisper.audio.demucs_audio`.
vad : bool, default False
Whether to use Silero VAD to generate timestamp suppression mask.
Silero VAD requires PyTorch 1.12.0+. Official repo, https://github.com/snakers4/silero-vad.
vad_threshold : float, default 0.35
Threshold for detecting speech with Silero VAD. Low threshold reduces false positives for silence detection.
vad_onnx : bool, default False
Whether to use ONNX for Silero VAD.
min_word_dur : float, default 0.1
Shortest duration each word is allowed to reach for silence suppression.
nonspeech_error : float, default 0.3
Relative error of non-speech sections that appear in between a word for silence suppression.
only_voice_freq : bool, default False
Whether to only use sound between 200 - 5000 Hz, where majority of human speech are.
prepend_punctuations : str, default '"'“¿([{-)'
Punctuations to prepend to next word.
append_punctuations : str, default '.。,,!!??::”)]}、)'
Punctuations to append to previous word.
progress_callback : Callable, optional
A function that will be called when transcription progress is updated.
The callback need two parameters.
The first parameter is a float for seconds of the audio that has been transcribed.
The second parameter is a float for total duration of audio in seconds.
ignore_compatibility : bool, default False
Whether to ignore warnings for compatibility issues with the detected Whisper version.
Returns
-------
stable_whisper.result.WhisperResult or None
All timestamps, words, probabilities, and other data from the alignment of ``audio``. Return None if alignment
fails and ``remove_instant_words = True``.
Notes
-----
If ``token_step`` is less than 1, ``token_step`` will be set to its maximum value, 442. This value is computed with
``whisper.model.Whisper.dims.n_text_ctx`` - 6.
IF ``original_split = True`` and a line break is found in middle of a word in ``text``, the split will occur after
that word.
``regroup`` is ignored if ``original_split = True``.
Examples
--------
>>> import stable_whisper
>>> model = stable_whisper.load_model('base')
>>> result = model.align('helloworld.mp3', 'Hello, World!', 'English')
>>> result.to_srt_vtt('helloword.srt')
Saved 'helloworld.srt'
"""
is_faster_model = model.__module__.startswith('faster_whisper.')
if demucs_options is None:
demucs_options = {}
if demucs_output:
if 'save_path' not in demucs_options:
demucs_options['save_path'] = demucs_output
warnings.warn('``demucs_output`` is deprecated. Use ``demucs_options`` with ``save_path`` instead. '
'E.g. demucs_options=dict(save_path="demucs_output.mp3")',
DeprecationWarning, stacklevel=2)
max_token_step = (model.max_length if is_faster_model else model.dims.n_text_ctx) - 6
if token_step < 1:
token_step = max_token_step
elif token_step > max_token_step:
raise ValueError(f'The max value for [token_step] is {max_token_step} but got {token_step}.')
warn_compatibility_issues(whisper, ignore_compatibility)
split_indices_by_char = []
if isinstance(text, WhisperResult):
if language is None:
language = text.language
if original_split and len(text.segments) > 1 and text.has_words:
split_indices_by_char = np.cumsum([sum(len(w.word) for w in seg.words) for seg in text.segments])
text = text.all_tokens() if text.has_words and all(w.tokens for w in text.all_words()) else text.text
elif isinstance(text, str):
if original_split and '\n' in text:
text_split = [line if line.startswith(' ') else ' '+line for line in text.splitlines()]
split_indices_by_char = np.cumsum([len(seg) for seg in text_split])
text = ''.join(re.sub(r'\s', ' ', seg) for seg in text_split)
else:
text = re.sub(r'\s', ' ', text)
if not text.startswith(' '):
text = ' ' + text
if language is None:
raise TypeError('expected argument for language')
if tokenizer is None:
tokenizer = get_tokenizer(model, is_faster_model=is_faster_model, language=language, task='transcribe')
tokens = tokenizer.encode(text) if isinstance(text, str) else text
tokens = [t for t in tokens if t < tokenizer.eot]
_, (words, word_tokens), _ = split_word_tokens([dict(tokens=tokens)], tokenizer)
audio = prep_audio(
audio,
demucs=demucs,
demucs_options=demucs_options,
only_voice_freq=only_voice_freq,
verbose=verbose
)
sample_padding = int(N_FFT // 2) + 1
seek_sample = 0
total_samples = audio.shape[-1]
total_duration = round(total_samples / SAMPLE_RATE, 2)
total_words = len(words)
if is_faster_model:
def timestamp_words():
temp_segment = dict(
seek=0,
start=0.0,
end=round(segment_samples / model.feature_extractor.sampling_rate, 3),
tokens=[t for wt in curr_word_tokens for t in wt],
)
features = model.feature_extractor(audio_segment.numpy())
encoder_output = model.encode(features[:, : model.feature_extractor.nb_max_frames])
model.add_word_timestamps(
segments=[temp_segment],
tokenizer=tokenizer,
encoder_output=encoder_output,
num_frames=round(segment_samples / model.feature_extractor.hop_length),
prepend_punctuations=prepend_punctuations,
append_punctuations=append_punctuations,
last_speech_timestamp=temp_segment['start'],
)
cumsum_lens = np.cumsum([len(w) for w in curr_words]).tolist()
final_cumsum_lens = np.cumsum([len(w['word']) for w in temp_segment['words']]).tolist()
assert not (set(final_cumsum_lens) - set(cumsum_lens)), 'word mismatch'
prev_l_idx = 0
for w_idx, cs_len in enumerate(final_cumsum_lens):
temp_segment['words'][w_idx]['start'] = round(temp_segment['words'][w_idx]['start'] + time_offset, 3)
temp_segment['words'][w_idx]['end'] = round(temp_segment['words'][w_idx]['end'] + time_offset, 3)
l_idx = cumsum_lens.index(cs_len)+1
temp_segment['words'][w_idx]['tokens'] = [t for wt in curr_word_tokens[prev_l_idx:l_idx] for t in wt]
prev_l_idx = l_idx
return temp_segment
else:
def timestamp_words():
temp_segment = dict(
seek=time_offset,
tokens=(curr_words, curr_word_tokens)
)
mel_segment = log_mel_spectrogram(audio_segment, model.dims.n_mels, padding=sample_padding)
mel_segment = pad_or_trim(mel_segment, N_FRAMES).to(device=model.device)
add_word_timestamps_stable(
segments=[temp_segment],
model=model,
tokenizer=tokenizer,
mel=mel_segment,
num_samples=segment_samples,
split_callback=(lambda x, _: x),
prepend_punctuations=prepend_punctuations,
append_punctuations=append_punctuations,
gap_padding=None
)
return temp_segment
def get_curr_words():
nonlocal words, word_tokens
curr_tk_count = 0
w, wt = [], []
for _ in range(len(words)):
tk_count = len(word_tokens[0])
if curr_tk_count + tk_count > token_step and w:
break
w.append(words.pop(0))
wt.append(word_tokens.pop(0))
curr_tk_count += tk_count
return w, wt
result = []
nonspeech_timings = [[], []]
nonspeech_vad_timings = None
if (suppress_silence or nonspeech_skip is not None) and vad:
nonspeech_vad_timings = (
get_vad_silence_func(onnx=vad_onnx, verbose=verbose)(audio, speech_threshold=vad_threshold)
)
if nonspeech_vad_timings is not None:
nonspeech_timings = nonspeech_vad_timings[0].copy(), nonspeech_vad_timings[1].copy()
with tqdm(total=total_duration, unit='sec', disable=verbose is not False, desc='Align') as tqdm_pbar:
def update_pbar(finish: bool = False):
tqdm_pbar.update((total_duration if finish else min(round(last_ts, 2), total_duration)) - tqdm_pbar.n)
if progress_callback is not None:
progress_callback(seek=tqdm_pbar.n, total=tqdm_pbar.total)
def redo_words(_idx: int = None):
nonlocal seg_words, seg_tokens, seg_words, words, word_tokens, curr_words, temp_word
if curr_words and temp_word is not None:
assert curr_words[0]['word'] == temp_word['word']
if curr_words[0]['probability'] >= temp_word['probability']:
temp_word = curr_words[0]
if _idx is None: # redo all
words = seg_words + words
word_tokens = seg_tokens + word_tokens
curr_words = []
elif _idx != len(seg_words): # redo from _idx
words = seg_words[_idx:] + words
word_tokens = seg_tokens[_idx:] + word_tokens
curr_words = curr_words[:_idx]
if curr_words:
if temp_word is not None:
curr_words[0] = temp_word
temp_word = None
words = seg_words[_idx-1:_idx] + words
word_tokens = seg_tokens[_idx-1:_idx] + word_tokens
temp_word = curr_words.pop(-1)
else:
if temp_word is not None:
curr_words[0] = temp_word
temp_word = None
n_samples = model.feature_extractor.n_samples if is_faster_model else N_SAMPLES
temp_word = None
while words and seek_sample < total_samples:
time_offset = seek_sample / SAMPLE_RATE
seek_sample_end = seek_sample + n_samples
audio_segment = audio[seek_sample:seek_sample_end]
segment_samples = audio_segment.shape[-1]
if nonspeech_skip is not None:
segment_nonspeech_timings = None
if not vad:
ts_token_mask = wav2mask(audio_segment, q_levels=q_levels, k_size=k_size)
segment_nonspeech_timings = mask2timing(ts_token_mask, time_offset=time_offset)
if segment_nonspeech_timings is not None:
nonspeech_timings[0].extend(segment_nonspeech_timings[0])
nonspeech_timings[1].extend(segment_nonspeech_timings[1])
elif nonspeech_vad_timings:
timing_indices = np.logical_and(
nonspeech_vad_timings[1] > time_offset,
nonspeech_vad_timings[0] < time_offset + 30.0
)
if timing_indices.any():
segment_nonspeech_timings = (
nonspeech_vad_timings[0][timing_indices], nonspeech_vad_timings[1][timing_indices]
)
else:
segment_nonspeech_timings = None
if mn := timing_indices.argmax():
nonspeech_vad_timings = (nonspeech_vad_timings[0][mn:], nonspeech_vad_timings[1][mn:])
if segment_nonspeech_timings is not None:
# segment has no detectable speech
if (
(segment_nonspeech_timings[0][0] <= time_offset + min_word_dur) and
(segment_nonspeech_timings[1][0] >= time_offset + segment_samples - min_word_dur)
):
seek_sample += segment_samples
continue
timing_indices = (segment_nonspeech_timings[1] - segment_nonspeech_timings[0]) >= nonspeech_skip
if any(timing_indices):
nonspeech_starts = segment_nonspeech_timings[0][timing_indices]
nonspeech_ends = segment_nonspeech_timings[1][timing_indices]
if round(time_offset, 3) >= nonspeech_starts[0]:
seek_sample = round(nonspeech_ends[0] * SAMPLE_RATE)
if seek_sample + (min_word_dur * SAMPLE_RATE) >= total_samples:
seek_sample = total_samples
continue
time_offset = seek_sample / SAMPLE_RATE
if len(nonspeech_starts) > 1:
seek_sample_end = (
seek_sample + round((nonspeech_starts[1] - nonspeech_ends[0]) * SAMPLE_RATE)
)
audio_segment = audio[seek_sample:seek_sample_end]
segment_samples = audio_segment.shape[-1]
curr_words, curr_word_tokens = get_curr_words()
segment = timestamp_words()
curr_words = segment['words']
seg_words = [w['word'] for w in curr_words]
seg_tokens = [w['tokens'] for w in curr_words]
durations = np.array([w['end'] - w['start'] for w in curr_words]).round(3)
nonzero_mask = durations > 0
nonzero_indices = np.flatnonzero(nonzero_mask)
if len(nonzero_indices):
redo_index = nonzero_indices[-1] + 1
if (
words and
redo_index > 1 and
curr_words[nonzero_indices[-1]]['end'] >= np.floor(time_offset + segment_samples / SAMPLE_RATE)
):
nonzero_mask[nonzero_indices[-1]] = False
nonzero_indices = nonzero_indices[:-1]
redo_index = nonzero_indices[-1] + 1
med_dur = np.median(durations[:redo_index])
if fast_mode:
new_start = None
global_max_dur = None
else:
local_max_dur = round(med_dur * word_dur_factor, 3) if word_dur_factor else None
if max_word_dur:
local_max_dur = min(local_max_dur, max_word_dur) if local_max_dur else max_word_dur
global_max_dur = max_word_dur
else:
global_max_dur = local_max_dur or None
if global_max_dur and med_dur > global_max_dur:
med_dur = global_max_dur
if (
local_max_dur and durations[nonzero_indices[0]] > global_max_dur
):
new_start = round(max(
curr_words[nonzero_indices[0]]['end'] - (med_dur * nonzero_indices[0] + local_max_dur),
curr_words[nonzero_indices[0]]['start']
), 3)
if new_start <= time_offset:
new_start = None
else:
new_start = None
if new_start is None:
if global_max_dur:
index_offset = nonzero_indices[0] + 1
redo_indices = \
np.flatnonzero(durations[index_offset:redo_index] > global_max_dur) + index_offset
if len(redo_indices):
redo_index = redo_indices[0]
last_ts = curr_words[redo_index - 1]['end']
redo_words(redo_index)
else:
last_ts = new_start
redo_words()
seek_sample = round(last_ts * SAMPLE_RATE)
else:
seek_sample += audio_segment.shape[-1]
last_ts = round(seek_sample / SAMPLE_RATE, 2)
redo_words()
update_pbar()
result.extend(curr_words)
if verbose:
line = '\n'.join(
f"[{format_timestamp(word['start'])}] -> "
f"[{format_timestamp(word['end'])}] \"{word['word']}\""
for word in curr_words
)
safe_print(line)
update_pbar(True)
if temp_word is not None:
result.append(temp_word)
if not result:
warnings.warn('Failed to align text.', stacklevel=2)
elif words:
warnings.warn(f'Failed to align the last {len(words)}/{total_words} words after '
f'{format_timestamp(result[-1]["end"])}.', stacklevel=2)
if words and not remove_instant_words:
result.extend(
[
dict(word=w, start=total_duration, end=total_duration, probability=0.0, tokens=wt)
for w, wt in zip(words, word_tokens)
]
)
if not result:
return
if len(split_indices_by_char):
word_lens = np.cumsum([[len(w['word']) for w in result]])
split_indices = [(word_lens >= i).nonzero()[0][0]+1 for i in split_indices_by_char]
result = WhisperResult([result[i:j] for i, j in zip([0]+split_indices[:-1], split_indices)])
else:
result = WhisperResult([result])
if suppress_silence:
result.suppress_silence(
*nonspeech_timings,
min_word_dur=min_word_dur,
word_level=suppress_word_ts,
nonspeech_error=nonspeech_error,
use_word_position=use_word_position
)
result.update_nonspeech_sections(*nonspeech_timings)
if not original_split:
result.regroup(regroup)
if fail_segs := len([None for s in result.segments if s.end-s.start <= 0]):
warnings.warn(f'{fail_segs}/{len(result.segments)} segments failed to align.', stacklevel=2)
return result
def refine(
model: "Whisper",
audio: Union[str, np.ndarray, torch.Tensor, bytes],
result: WhisperResult,
*,
steps: str = None,
rel_prob_decrease: float = .03,
abs_prob_decrease: float = .05,
rel_rel_prob_decrease: Optional[float] = None,
prob_threshold: float = .5,
rel_dur_change: Optional[float] = .5,
abs_dur_change: Optional[float] = None,
word_level: bool = True,
precision: float = None,
single_batch: bool = False,
inplace: bool = True,
demucs: Union[bool, torch.nn.Module] = False,
demucs_options: dict = None,
only_voice_freq: bool = False,
verbose: Optional[bool] = False
) -> WhisperResult:
"""
Improve existing timestamps.
This function iteratively muting portions of the audio and monitoring token probabilities to find the most precise
timestamps. This "most precise" in this case means the latest start and earliest end of a word that maintains an
acceptable probability determined by the specified arguments.
This is useful readjusting timestamps when they start too early or end too late.
Parameters
----------
model : "Whisper"
The Whisper ASR model modified instance
audio : str or numpy.ndarray or torch.Tensor or bytes
Path/URL to the audio file, the audio waveform, or bytes of audio file.
If audio is :class:`numpy.ndarray` or :class:`torch.Tensor`, the audio must be already at sampled to 16kHz.
result : stable_whisper.result.WhisperResult
All timestamps, words, probabilities, and other data from the transcription of ``audio``.
steps : str, default 'se'
Instructions for refinement. A 's' means refine start-timestamps. An 'e' means refine end-timestamps.
rel_prob_decrease : float, default 0.3
Maximum percent decrease in probability relative to original probability which is the probability from muting
according initial timestamps.
abs_prob_decrease : float, default 0.05
Maximum decrease in probability from original probability.
rel_rel_prob_decrease : float, optional
Maximum percent decrease in probability relative to previous probability which is the probability from previous
iteration of muting.
prob_threshold : float, default 0.5
Stop refining the timestamp if the probability of its token goes below this value.
rel_dur_change : float, default 0.5
Maximum percent change in duration of a word relative to its original duration.
abs_dur_change : float, optional
Maximum seconds a word is allowed deviate from its original duration.
word_level : bool, default True
Whether to refine timestamps on word-level. If ``False``, only refine start/end timestamps of each segment.
precision : float, default 0.1
Precision of refined timestamps in seconds. The lowest precision is 0.02 second.
single_batch : bool, default False
Whether to process in only batch size of one to reduce memory usage.
inplace : bool, default True, meaning return a deepcopy of ``result``
Whether to alter timestamps in-place.
demucs : bool or torch.nn.Module, default False
Whether to preprocess ``audio`` with Demucs to isolate vocals / remove noise. Set ``demucs`` to an instance of
a Demucs model to avoid reloading the model for each run.
Demucs must be installed to use. Official repo, https://github.com/facebookresearch/demucs.
demucs_options : dict, optional
Options to use for :func:`stable_whisper.audio.demucs_audio`.
only_voice_freq : bool, default False
Whether to only use sound between 200 - 5000 Hz, where majority of human speech are.
verbose : bool or None, default False
Whether to display the text being decoded to the console.
Displays all the details if ``True``. Displays progressbar if ``False``. Display nothing if ``None``.
Returns
-------
stable_whisper.result.WhisperResult
All timestamps, words, probabilities, and other data from the refinement of ``text`` with ``audio``.
Notes
-----
The lower the ``precision``, the longer the processing time.
Examples
--------
>>> import stable_whisper
>>> model = stable_whisper.load_model('base')
>>> result = model.transcribe('audio.mp3')
>>> model.refine('audio.mp3', result)
>>> result.to_srt_vtt('audio.srt')
Saved 'audio.srt'
"""
if not steps:
steps = 'se'
if precision is None:
precision = 0.1
if invalid_steps := steps.replace('s', '').replace('e', ''):
raise ValueError(f'Invalid step(s): {", ".join(invalid_steps)}')
if not result.has_words:
raise NotImplementedError(f'Result must have word timestamps.')
if not inplace:
result = copy.deepcopy(result)
audio = prep_audio(
audio,
demucs=demucs,
demucs_options=demucs_options,
only_voice_freq=only_voice_freq,
verbose=verbose
)
max_inference_tokens = model.dims.n_text_ctx - 6
sample_padding = int(N_FFT // 2) + 1
frame_precision = max(round(precision * FRAMES_PER_SECOND), 2)
total_duration = round(audio.shape[-1] / SAMPLE_RATE, 3)
tokenizer = get_tokenizer(model, language=result.language, task='transcribe')
def ts_to_frames(timestamps: Union[np.ndarray, list]) -> np.ndarray:
if isinstance(timestamps, list):
timestamps = np.array(timestamps)
return (timestamps * FRAMES_PER_SECOND).round().astype(int)
def curr_segments():
all_words = result.all_words()
seg_edge_mask = np.array([
1 if _i == 0 else (2 if _i == len(seg.words)-1 else 0)
for seg in result.segments
for _i, w in enumerate(seg.words)
])
start_times = [
max(
0 if abs_dur_change is None else (w.start - abs_dur_change),
0 if rel_dur_change is None else (w.start - w.duration * rel_dur_change),
0 if i == 0 else max(all_words[i - 1].end, w.end - 14.5, 0)
)
for i, w in enumerate(all_words)
]
end_times = [
min(
total_duration if abs_dur_change is None else (w.end + abs_dur_change),
total_duration if rel_dur_change is None else (w.end + w.duration * rel_dur_change),
total_duration if i == len(all_words) else min(all_words[i].start, w.start + 14.5, total_duration)
)
for i, w in enumerate(all_words, 1)
]
start = start_times[0]
prev_i = 0
curr_words, curr_starts, curr_ends = [], [], []
for i, w in enumerate(all_words, 1):
if (
(end_times[0] - start > 30) or
(len(curr_words) + 1 > max_inference_tokens)
):
if curr_words:
yield curr_words, curr_starts, curr_ends, seg_edge_mask[prev_i:prev_i+len(curr_words)]
curr_words, curr_starts, curr_ends = [], [], []
start = start_times[0]
prev_i = i - 1
curr_words.append(w)
curr_starts.append(start_times.pop(0))
curr_ends.append(end_times.pop(0))
if i == len(all_words):
yield curr_words, curr_starts, curr_ends, seg_edge_mask[prev_i:prev_i+len(curr_words)]
def _refine(_step: str):
for words, min_starts, max_ends, edge_mask in curr_segments():
time_offset = min_starts[0]
start_sample = round(time_offset * SAMPLE_RATE)
end_sample = round(max_ends[-1] * SAMPLE_RATE)
audio_segment = audio[start_sample:end_sample + 1].unsqueeze(0)
max_starts = ts_to_frames(np.array([w.end for w in words]) - time_offset)
min_ends = ts_to_frames(np.array([w.start for w in words]) - time_offset)
min_starts = ts_to_frames(np.array(min_starts) - time_offset)
max_ends = ts_to_frames(np.array(max_ends) - time_offset)
mid_starts = min_starts + ((max_starts - min_starts) / 2).round().astype(int)
mid_ends = min_ends + ((max_ends - min_ends) / 2).round().astype(int)
text_tokens = [t for w in words for t in w.tokens if t < tokenizer.eot]
word_tokens = [[t for t in w.tokens if t < tokenizer.eot] for w in words]
orig_mel_segment = log_mel_spectrogram(audio_segment, model.dims.n_mels, padding=sample_padding)
orig_mel_segment = pad_or_trim(orig_mel_segment, N_FRAMES).to(device=model.device)
def get_prob():
tokens = torch.tensor(
[
*tokenizer.sot_sequence,
tokenizer.no_timestamps,
*text_tokens,
tokenizer.eot,
]
).to(model.device)
with torch.no_grad():
curr_mel_segment = mel_segment if prob_indices else orig_mel_segment
if single_batch:
logits = torch.cat(
[model(_mel.unsqueeze(0), tokens.unsqueeze(0)) for _mel in curr_mel_segment]
)
else:
logits = model(curr_mel_segment, tokens.unsqueeze(0))
sampled_logits = logits[:, len(tokenizer.sot_sequence):, : tokenizer.eot]
token_probs = sampled_logits.softmax(dim=-1)
text_token_probs = token_probs[:, np.arange(len(text_tokens)), text_tokens]
token_positions = token_probs[:, np.arange(len(text_tokens))]
if logits.shape[0] != 1 and prob_indices is not None:
indices1 = np.arange(len(prob_indices))
text_token_probs = text_token_probs[prob_indices, indices1]
token_positions = token_positions[prob_indices, indices1]
else:
text_token_probs.squeeze_(0)
text_token_probs = text_token_probs.tolist()
token_positions = \
(
token_positions.sort().indices == tokens[len(tokenizer.sot_sequence) + 1:-1][:, None]
).nonzero()[:, -1].tolist()
word_boundaries = np.pad(np.cumsum([len(t) for t in word_tokens]), (1, 0))
word_probabilities = np.array([
text_token_probs[j-1] if is_end_ts else text_token_probs[i]
for i, j in zip(word_boundaries[:-1], word_boundaries[1:])
])
token_positions = [
token_positions[j-1] if is_end_ts else token_positions[i]
for i, j in zip(word_boundaries[:-1], word_boundaries[1:])
]
return word_probabilities, token_positions
def update_ts():
if not is_finish[idx] or changes[idx, -1] == -1:
return
new_ts = round(time_offset + (changes[idx, -1] / FRAMES_PER_SECOND), 3)
if changes[idx, 0] and not changes[idx, 1]:
if is_end_ts:
if new_ts <= words[idx].end:
return
elif new_ts >= words[idx].start:
return
if not verbose:
return
curr_word = words[idx]
word_info = (f'[Word="{curr_word.word}"] '
f'[Segment ID: {curr_word.segment_id}] '
f'[Word ID: {curr_word.id}]')
if is_end_ts:
print(f'End: {words[idx].end} -> {new_ts} {word_info}')
words[idx].end = new_ts
else:
print(f'Start: {words[idx].start} -> {new_ts} {word_info}')
words[idx].start = new_ts
mel_segment = orig_mel_segment.clone().repeat_interleave(2, 0)
is_end_ts = _step == 'e'
prob_indices = []
is_finish = np.less([w.probability for w in words], prob_threshold)
is_finish = np.logical_or(is_finish, [w.duration == 0 for w in words])
if not word_level:
is_finish[edge_mask != (2 if is_end_ts else 1)] = True
for idx, _i in enumerate(max_starts if is_end_ts else min_ends):
row = idx % 2
prob_indices.extend([row] * len(words[idx].tokens))
if is_finish[idx]:
continue
if is_end_ts:
_p = mel_segment.shape[-1] if idx == len(words)-1 else mid_ends[idx+1]
mel_segment[row, :, _i:_p] = 0
else:
_p = 0 if idx == 0 else mid_starts[idx-1]
mel_segment[row, :, _p:_i] = 0
orig_probs, orig_tk_poss = get_prob()
changes = np.zeros((orig_probs.shape[-1], 3), dtype=int)
changes[:, -1] = -1
frame_indices = (mid_ends, max_starts) if is_end_ts else (min_ends, mid_starts)
for idx, (_s, _e) in enumerate(zip(*frame_indices)):
row = idx % 2
if is_finish[idx]:
continue
mel_segment[row, :, _s:_e] = 0
new_probs = prev_probs = orig_probs
while not np.all(is_finish):
probs, tk_poss = get_prob()
abs_diffs = orig_probs - probs
rel_diffs = abs_diffs / orig_probs
rel_change_diffs = (prev_probs - probs) / prev_probs
prev_probs = probs
for idx, (abs_diff, rel_diff, rel_change_diff, prob) \
in enumerate(zip(abs_diffs, rel_diffs, rel_change_diffs, probs)):
if is_finish[idx]:
continue
if is_end_ts:
curr_min, curr_max, curr_mid = min_ends[idx], max_ends[idx], mid_ends[idx]
else:
curr_min, curr_max, curr_mid = min_starts[idx], max_starts[idx], mid_starts[idx]
row = prob_indices[idx]
best_tks_changed = orig_tk_poss[idx] > tk_poss[idx]
failed_requirements = (
abs_diff > abs_prob_decrease or
rel_diff > rel_prob_decrease or
(rel_rel_prob_decrease is not None and rel_change_diff > rel_rel_prob_decrease) or
prob < prob_threshold or
best_tks_changed
)
if failed_requirements:
changes[idx][0] = 1
if is_end_ts:
curr_min = curr_mid
else:
curr_max = curr_mid
else:
changes[idx][1] = 1
if is_end_ts:
curr_max = curr_mid
else:
curr_min = curr_mid
if (new_mid_change := round((curr_max - curr_min) / 2)) < frame_precision:
is_finish[idx] = True
update_ts()
continue
new_mid = curr_min + new_mid_change
if failed_requirements:
if is_end_ts:
mel_segment[row, :, curr_min:new_mid] = orig_mel_segment[0, :, curr_min:new_mid]
else:
mel_segment[row, :, new_mid:curr_max] = orig_mel_segment[0, :, new_mid:curr_max]
else:
if is_end_ts:
mel_segment[row, :, new_mid:curr_max] = 0
else:
mel_segment[row, :, curr_min:new_mid] = 0
if is_end_ts:
min_ends[idx], max_ends[idx], mid_ends[idx] = curr_min, curr_max, new_mid
else:
min_starts[idx], max_starts[idx], mid_starts[idx] = curr_min, curr_max, new_mid
if not best_tks_changed:
changes[idx][-1] = new_mid
new_probs[idx] = prob
update_pbar(words[-1].end)
with tqdm(total=round(total_duration, 2), unit='sec', disable=verbose is not False, desc='Refine') as tqdm_pbar:
def update_pbar(last_ts: float):
nonlocal prev_ts
tqdm_pbar.update(round(((last_ts - prev_ts) / len(steps)), 2))
prev_ts = last_ts
for step_count, step in enumerate(steps, 1):
prev_ts = 0
_refine(step)
update_pbar(round(tqdm_pbar.total / len(step), 2))
tqdm_pbar.update(tqdm_pbar.total - tqdm_pbar.n)
result.update_all_segs_with_words()
return result
def locate(
model: "Whisper",
audio: Union[str, np.ndarray, torch.Tensor, bytes],
text: Union[str, List[int]],
language: str,
count: int = 1,
duration_window: Union[float, Tuple[float, float]] = 3.0,
*,
mode: int = 0,
start: float = None,
end: float = None,
probability_threshold: float = 0.5,
eots: int = 1,
max_token_per_seg: int = 20,
exact_token: bool = False,
case_sensitive: bool = False,
verbose: bool = False,
initial_prompt: str = None,
suppress_tokens: Union[str, List[int]] = '-1',
demucs: Union[bool, torch.nn.Module] = False,
demucs_options: dict = None,
only_voice_freq: bool = False,
) -> Union[List[Segment], List[dict]]:
"""
Locate when specific words are spoken in ``audio`` without fully transcribing.
This is usefully for quickly finding at what time the specify words or phrases are spoken in an audio. Since it
does not need to transcribe the audio to approximate the time, it is significantly faster transcribing then
locating the word in the transcript.
It can also transcribe few seconds around the approximated time to find out what was said around those words or
confirm if the word was even spoken near that time.
Parameters
----------
model : whisper.model.Whisper
An instance of Whisper ASR model.
audio : str or numpy.ndarray or torch.Tensor or bytes
Path/URL to the audio file, the audio waveform, or bytes of audio file.
If audio is :class:`numpy.ndarray` or :class:`torch.Tensor`, the audio must be already at sampled to 16kHz.
text: str or list of int
Words/phrase or list of tokens to search for in ``audio``.
language : str
Language of the ``text``.
count : int, default 1, meaning stop search after 1 match
Number of matches to find. Use 0 to look for all.
duration_window : float or tuple of (float, float), default 3.0, same as (3.0, 3.0)
Seconds before and after the end timestamp approximations to transcribe after mode 1.
If tuple pair of values, then the 1st value will be seconds before the end and 2nd value will be seconds after.
mode : int, default 0
Mode of search.
2, Approximates the end timestamp of ``text`` in the audio. This mode does not confirm whether ``text`` is
spoken at the timestamp
1, Completes mode 2 then transcribes audio within ``duration_window`` to confirm whether `text` is a match at
the approximated timestamp by checking if ``text`` at that ``duration_window`` is within
``probability_threshold`` or matching the string content if ``text`` with the transcribed text at the
``duration_window``.
0, Completes mode 1 then add word timestamps to the transcriptions of each match.
Modes from fastest to slowest: 2, 1, 0
start : float, optional, meaning it starts from 0s
Seconds into the audio to start searching for ``text``.
end : float, optional
Seconds into the audio to stop searching for ``text``.
probability_threshold : float, default 0.5
Minimum probability of each token in ``text`` for it to be considered a match.
eots : int, default 1
Number of EOTs to reach before stopping transcription at mode 1. When transcription reach a EOT, it usually
means the end of the segment or audio. Once ``text`` is found in the ``duration_window``, the transcription
will stop immediately upon reaching a EOT.
max_token_per_seg : int, default 20
Maximum number of tokens to transcribe in the ``duration_window`` before stopping.
exact_token : bool, default False
Whether to find a match base on the exact tokens that make up ``text``.
case_sensitive : bool, default False
Whether to consider the case of ``text`` when matching in string content.
verbose : bool or None, default False
Whether to display the text being decoded to the console.
Displays all the details if ``True``. Displays progressbar if ``False``. Display nothing if ``None``.
initial_prompt : str, optional
Text to provide as a prompt for the first window. This can be used to provide, or
"prompt-engineer" a context for transcription, e.g. custom vocabularies or proper nouns
to make it more likely to predict those word correctly.
suppress_tokens : str or list of int, default '-1', meaning suppress special characters except common punctuations
List of tokens to suppress.
demucs : bool or torch.nn.Module, default False
Whether to preprocess ``audio`` with Demucs to isolate vocals / remove noise. Set ``demucs`` to an instance of
a Demucs model to avoid reloading the model for each run.
Demucs must be installed to use. Official repo, https://github.com/facebookresearch/demucs.
demucs_options : dict, optional
Options to use for :func:`stable_whisper.audio.demucs_audio`.
only_voice_freq : bool, default False
Whether to only use sound between 200 - 5000 Hz, where majority of human speech are.
Returns
-------
stable_whisper.result.Segment or list of dict or list of float
Mode 0, list of instances of :class:`stable_whisper.result.Segment`.
Mode 1, list of dictionaries with end timestamp approximation of matches and transcribed neighboring words.
Mode 2, list of timestamps in seconds for each end timestamp approximation.
Notes
-----
For ``text``, the case and spacing matters as 'on', ' on', ' On' are different tokens, therefore chose the one that
best suits the context (e.g. ' On' to look for it at the beginning of a sentence).
Use a sufficiently large first value of ``duration_window`` i.e. the value > time it is expected to speak ``text``.
If ``exact_token = False`` and the string content matches, then ``probability_threshold`` is not used.
Examples
--------
>>> import stable_whisper
>>> model = stable_whisper.load_model('base')
>>> matches = model.locate('audio.mp3', 'are', 'English', verbose=True)
Some words can sound the same but have different spellings to increase of the chance of finding such words use
``initial_prompt``.
>>> matches = model.locate('audio.mp3', ' Nickie', 'English', verbose=True, initial_prompt='Nickie')
"""
from whisper.timing import median_filter
from whisper.decoding import DecodingTask, DecodingOptions, SuppressTokens
from .timing import split_word_tokens
sample_padding = int(N_FFT // 2) + 1
sec_per_emb = model.dims.n_audio_ctx / CHUNK_LENGTH
CHUNK_SAMPLES = round(CHUNK_LENGTH * SAMPLE_RATE)
if isinstance(duration_window, (float, int)):
duration_window = [duration_window] * 2
window_sum = sum(duration_window)
assert CHUNK_SAMPLES > window_sum, \
f'Sum of [duration_window] must be less than {CHUNK_SAMPLES}, got {window_sum}'
adjusted_chunk_size = CHUNK_SAMPLES - round(duration_window[0]*SAMPLE_RATE)
if initial_prompt:
initial_prompt = ' ' + initial_prompt.strip()
task = DecodingTask(model, DecodingOptions(
language=language, prompt=initial_prompt, suppress_tokens=suppress_tokens, without_timestamps=True,
))
tokenizer = task.tokenizer
initial_tokens = list(task.initial_tokens)
text_tokens, text = (tokenizer.encode(text), text) if isinstance(text, str) else (text, tokenizer.decode(text))
if not exact_token and not case_sensitive:
text = text.lower()
tk_suppress_masks = [
[i for i in fil.suppress_tokens if i < tokenizer.eot]
for fil in task.logit_filters if isinstance(fil, SuppressTokens)
]
audio = prep_audio(
audio,
demucs=demucs,
demucs_options=demucs_options,
only_voice_freq=only_voice_freq,
verbose=verbose
)
prev_target_end = None
found = 0
if end:
audio = audio[:round(end * SAMPLE_RATE)]
seek_sample = round(start * SAMPLE_RATE) if start else 0
total_samples = audio.shape[-1]
def _locate():
nonlocal seek_sample, found
seek = round(seek_sample / SAMPLE_RATE, 3)
audio_segment = audio[seek_sample: seek_sample + CHUNK_SAMPLES]
mel_segment = log_mel_spectrogram(audio_segment, model.dims.n_mels, padding=sample_padding)
mel_segment = pad_or_trim(mel_segment, N_FRAMES).to(device=model.device)
QKs = [None] * model.dims.n_text_layer
hooks = [
block.cross_attn.register_forward_hook(
lambda _, ins, outs, index=i: QKs.__setitem__(index, outs[-1])
)
for i, block in enumerate(model.decoder.blocks)
]
tokens = torch.tensor([initial_tokens + text_tokens]).to(model.device)
with torch.no_grad():
audio_features = model.encoder(mel_segment.unsqueeze(0))
model.decoder(tokens, audio_features)
for hook in hooks:
hook.remove()
weights = torch.cat([QKs[_l][:, _h] for _l, _h in model.alignment_heads.indices().T], dim=0)
weights = weights.softmax(dim=-1)
std, mean = torch.std_mean(weights, dim=-2, keepdim=True, unbiased=False)
weights = (weights - mean) / std
weights = median_filter(weights, 7)
matrix = weights.mean(axis=0)
target_end = round((matrix[-1].argmax()/sec_per_emb).item(), 3)
found_msg = f'"{text}" ending at ~{format_timestamp(target_end+seek)}' if verbose else ''
if mode == 2:
if found_msg:
safe_print('Unconfirmed:' + found_msg)
nonlocal prev_target_end
found += 1
if (
(seek_sample + CHUNK_SAMPLES >= total_samples) or
(count and found >= count) or
(prev_target_end == target_end)
):
seek_sample = total_samples
else:
seek_sample += round(target_end * SAMPLE_RATE)
prev_target_end = target_end
return dict(tokens=[], target_end=target_end+seek)
curr_start = round(max(target_end - duration_window[0], 0.), 3)
curr_end = round(target_end + duration_window[1], 3)
start_frame = round(curr_start * FRAMES_PER_SECOND)
end_frame = round(curr_end * FRAMES_PER_SECOND)
mel_segment_section = pad_or_trim(mel_segment[..., start_frame:end_frame], N_FRAMES)
temp_tokens = torch.tensor([initial_tokens]).to(model.device)
predictions = []
target_token_idx = 0
not_end = True
found_target = False
curr_eots = 0
temp_audio_features = model.encoder(mel_segment_section.unsqueeze(0))
tokens_to_decode = []
replace_found_tokens = []
infer_tokens = [temp_tokens[0]]
kv_cache, hooks = model.install_kv_cache_hooks()
while not_end:
with torch.no_grad():
logits = model.decoder(temp_tokens, temp_audio_features, kv_cache=kv_cache)[0, -1, :tokenizer.eot+1]
for tks in tk_suppress_masks:
logits[tks] = -np.inf
sorted_logits_idxs = logits.sort(dim=-1).indices[-2:]
best_token = sorted_logits_idxs[-1]
best_non_eot_token = sorted_logits_idxs[-2] if best_token == tokenizer.eot else best_token
logits = logits[:tokenizer.eot].softmax(dim=-1)
if found_target:
target_word_prob = is_match = None
else:
if exact_token:
is_match = False
else:
tokens_to_decode.append(best_non_eot_token)
temp_text = tokenizer.decode(tokens_to_decode)
if not case_sensitive:
temp_text = temp_text.lower()
if is_match := temp_text.endswith(text):
tokens_to_decode = []
target_word_prob = logits[text_tokens[target_token_idx]].item()
if (
target_word_prob is not None and
(
target_word_prob >= probability_threshold or
best_non_eot_token == text_tokens[target_token_idx] or
is_match
)
):
if is_match:
best_token = best_non_eot_token
token_prob = logits[best_token].item()
found_target = True
else:
best_token[None] = text_tokens[target_token_idx]
if len(replace_found_tokens) or best_non_eot_token != text_tokens[target_token_idx]:
replace_found_tokens.append(best_non_eot_token)
target_token_idx += 1
if target_token_idx == len(text_tokens):
found_target = True
token_prob = target_word_prob
if found_target:
found += 1
curr_eots = 0
else:
if not found_target:
if len(replace_found_tokens):
temp_tokens = torch.cat(infer_tokens)[None]
temp_tokens = torch.cat(
[temp_tokens[..., :-len(replace_found_tokens)],
torch.stack(replace_found_tokens)[None]]
)
replace_found_tokens = []
kv_cache.clear()
target_token_idx = 0
if best_token == tokenizer.eot:
if curr_eots >= eots or found_target:
not_end = False
else:
curr_eots += 1
best_token = best_non_eot_token
else:
curr_eots = 0
token_prob = None if best_token == tokenizer.eot else logits[best_token].item()
predictions.append(dict(token=best_token.item(), prob=token_prob))
if len(predictions) > max_token_per_seg:
not_end = False
if not_end:
infer_tokens.append(best_token[None])
temp_tokens = best_token[None, None]
kv_cache.clear()
for hook in hooks:
hook.remove()
segment = None
if found_target:
if found_msg:
safe_print('Confirmed: ' + found_msg, tqdm_pbar.write)
final_tokens = [p['token'] for p in predictions]
if mode == 1:
_, (ws, wts), _ = split_word_tokens([dict(tokens=final_tokens)], tokenizer)
final_token_probs = [p['prob'] for p in predictions]
wps = [float(np.mean([final_token_probs.pop(0) for _ in wt])) for wt in wts]
words = [dict(word=w, tokens=wt, probability=wp) for w, wt, wp in zip(ws, wts, wps)]
final_end = target_end+seek
near_text = "".join(ws)
segment = dict(end=final_end, text=text, duration_window_text=near_text, duration_window_word=words)
if verbose:
safe_print(f'Duration Window: "{near_text}"\n', tqdm_pbar.write)
seek_sample += round(curr_end * SAMPLE_RATE)
else:
segment = dict(
seek=0,
tokens=final_tokens
)
add_word_timestamps_stable(
segments=[segment],
model=model,
tokenizer=tokenizer,
mel=mel_segment,
num_samples=round(curr_end*SAMPLE_RATE),
gap_padding=None
)
segment = Segment(0, 0, '', words=segment['words'])
segment.update_seg_with_words()
seek_sample += round(segment.words[-1].end * SAMPLE_RATE)
segment.offset_time(seek)
segment.seek = curr_start
if verbose:
safe_print(segment.to_display_str(), tqdm_pbar.write)
else:
seek_sample += adjusted_chunk_size if audio_segment.shape[-1] == CHUNK_SAMPLES else audio_segment.shape[-1]
return segment
total_duration = round(total_samples / SAMPLE_RATE, 2)
matches = []
with tqdm(total=total_duration, unit='sec', disable=verbose is None, desc='Locate') as tqdm_pbar:
while seek_sample < total_samples and (not count or found < count):
if match := _locate():
matches.append(match)
tqdm_pbar.update(round(seek_sample/SAMPLE_RATE, 2) - tqdm_pbar.n)
tqdm_pbar.update(tqdm_pbar.total - tqdm_pbar.n)
if verbose and not matches:
safe_print(f'Failed to locate "{text}".')
return matches
|