from transformers import PretrainedConfig from typing import Literal, Optional class DNAEncoderConfig(PretrainedConfig): model_type = "dna_encoder" def __init__( self, vocab_size: int = 4, embedding_dim: int = 384, dim_feedforward: int = 1536, num_heads: int = 12, num_layers: int = 6, dropout: float = 0.1, activation: Literal["relu", "gelu"] = "gelu", pos_embedding: Optional[str] = "SinusoidalPositionalEncoding", max_position_embeddings: int = 1024, **kwargs ): self.vocab_size = vocab_size self.embedding_dim = embedding_dim self.dim_feedforward = dim_feedforward self.num_heads = num_heads self.num_layers = num_layers self.dropout = dropout self.activation = activation self.pos_embedding = pos_embedding self.max_position_embeddings = max_position_embeddings super().__init__(**kwargs)