shreyasrajesh commited on
Commit
c632a16
·
verified ·
1 Parent(s): ebd9069

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -175
README.md CHANGED
@@ -4,197 +4,109 @@ license: mit
4
  pipeline_tag: sentence-similarity
5
  ---
6
 
7
- # Model Card for Model ID
8
 
9
- <!-- Provide a quick summary of what the model is/does. -->
10
 
 
11
 
 
12
 
13
- ## Model Details
14
-
15
- ### Model Description
16
-
17
- <!-- Provide a longer summary of what this model is. -->
18
-
19
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
20
-
21
- - **Developed by:** [More Information Needed]
22
- - **Funded by [optional]:** [More Information Needed]
23
- - **Shared by [optional]:** [More Information Needed]
24
- - **Model type:** [More Information Needed]
25
- - **Language(s) (NLP):** [More Information Needed]
26
- - **License:** [More Information Needed]
27
- - **Finetuned from model [optional]:** [More Information Needed]
28
-
29
- ### Model Sources [optional]
30
-
31
- <!-- Provide the basic links for the model. -->
32
-
33
- - **Repository:** [More Information Needed]
34
- - **Paper [optional]:** [More Information Needed]
35
- - **Demo [optional]:** [More Information Needed]
36
-
37
- ## Uses
38
-
39
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
40
-
41
- ### Direct Use
42
-
43
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
44
-
45
- [More Information Needed]
46
-
47
- ### Downstream Use [optional]
48
-
49
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
50
-
51
- [More Information Needed]
52
-
53
- ### Out-of-Scope Use
54
-
55
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
56
-
57
- [More Information Needed]
58
-
59
- ## Bias, Risks, and Limitations
60
 
61
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
 
 
62
 
63
- [More Information Needed]
64
-
65
- ### Recommendations
66
-
67
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
68
-
69
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
70
-
71
- ## How to Get Started with the Model
72
-
73
- Use the code below to get started with the model.
74
 
75
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
 
77
  ## Training Details
78
 
79
- ### Training Data
80
-
81
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
82
-
83
- [More Information Needed]
84
 
85
  ### Training Procedure
86
-
87
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
88
-
89
- #### Preprocessing [optional]
90
-
91
- [More Information Needed]
92
-
93
-
94
- #### Training Hyperparameters
95
-
96
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
97
-
98
- #### Speeds, Sizes, Times [optional]
99
-
100
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
101
-
102
- [More Information Needed]
103
 
104
  ## Evaluation
105
 
106
- <!-- This section describes the evaluation protocols and provides the results. -->
107
-
108
- ### Testing Data, Factors & Metrics
109
-
110
- #### Testing Data
111
-
112
- <!-- This should link to a Dataset Card if possible. -->
113
-
114
- [More Information Needed]
115
-
116
- #### Factors
117
-
118
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
119
-
120
- [More Information Needed]
121
-
122
- #### Metrics
123
-
124
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
125
-
126
- [More Information Needed]
127
-
128
- ### Results
129
-
130
- [More Information Needed]
131
-
132
- #### Summary
133
-
134
-
135
-
136
- ## Model Examination [optional]
137
-
138
- <!-- Relevant interpretability work for the model goes here -->
139
-
140
- [More Information Needed]
141
-
142
- ## Environmental Impact
143
-
144
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
145
-
146
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
147
-
148
- - **Hardware Type:** [More Information Needed]
149
- - **Hours used:** [More Information Needed]
150
- - **Cloud Provider:** [More Information Needed]
151
- - **Compute Region:** [More Information Needed]
152
- - **Carbon Emitted:** [More Information Needed]
153
-
154
- ## Technical Specifications [optional]
155
-
156
- ### Model Architecture and Objective
157
-
158
- [More Information Needed]
159
-
160
- ### Compute Infrastructure
161
-
162
- [More Information Needed]
163
-
164
- #### Hardware
165
-
166
- [More Information Needed]
167
-
168
- #### Software
169
-
170
- [More Information Needed]
171
-
172
- ## Citation [optional]
173
-
174
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
175
-
176
- **BibTeX:**
177
-
178
- [More Information Needed]
179
-
180
- **APA:**
181
-
182
- [More Information Needed]
183
-
184
- ## Glossary [optional]
185
-
186
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
187
-
188
- [More Information Needed]
189
-
190
- ## More Information [optional]
191
-
192
- [More Information Needed]
193
 
194
- ## Model Card Authors [optional]
195
 
196
- [More Information Needed]
197
 
198
- ## Model Card Contact
 
 
 
 
 
 
 
199
 
200
- [More Information Needed]
 
4
  pipeline_tag: sentence-similarity
5
  ---
6
 
7
+ # DNA2Vec: Transformer-Based DNA Sequence Embedding
8
 
9
+ This repository provides an implementation of `dna2vec`, a transformer-based model designed for DNA sequence embeddings. It includes both the Hugging Face (`hf_model`) and a locally trained model (`local_model`). The model can be used for DNA sequence alignment, classification, and other genomic applications.
10
 
11
+ ## Model Overview
12
 
13
+ DNA sequence alignment is an essential genomic task that involves mapping short DNA reads to the most probable locations within a reference genome. Traditional methods rely on genome indexing and efficient search algorithms, while recent advances leverage transformer-based models to encode DNA sequences into vector representations.
14
 
15
+ The `dna2vec` framework introduces a **Reference-Free DNA Embedding (RDE) Transformer model**, which encodes DNA sequences into a shared vector space, allowing for efficient similarity search and sequence alignment.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
+ ### Key Features:
18
+ - **Transformer-based architecture** trained on genomic data.
19
+ - **Reference-free embeddings** that enable efficient sequence retrieval.
20
+ - **Contrastive loss for self-supervised training**, ensuring robust sequence similarity learning.
21
+ - **Support for Hugging Face and custom-trained local models**.
22
+ - **Efficient search through a DNA vector store**, reducing genome-wide alignment to a local search.
23
 
24
+ ## Model Details
 
 
 
 
 
 
 
 
 
 
25
 
26
+ ### Model Architecture
27
+ The transformer model consists of:
28
+ - **12 attention heads**
29
+ - **6 encoder layers**
30
+ - **Embedding dimension:** 1020
31
+ - **Vocabulary size:** 10,000
32
+ - **Cosine similarity-based sequence matching**
33
+ - **Dropout:** 0.1
34
+ - **Training: Cosine Annealing learning rate scheduling**
35
+
36
+ ## Installation
37
+
38
+ To use the model, install the required dependencies:
39
+
40
+ ```bash
41
+ pip install transformers torch
42
+ ```
43
+
44
+ ## Usage
45
+
46
+ ### Load Hugging Face Model
47
+
48
+ ```python
49
+ from transformers import AutoModel, AutoTokenizer
50
+ import torch
51
+ import torch.nn as nn
52
+
53
+ def load_hf_model():
54
+ hf_model = AutoModel.from_pretrained("roychowdhuryresearch/dna2vec", trust_remote_code=True)
55
+ hf_tokenizer = AutoTokenizer.from_pretrained("roychowdhuryresearch/dna2vec", trust_remote_code=True)
56
+
57
+ class AveragePooler(nn.Module):
58
+ def forward(self, last_hidden, attention_mask):
59
+ return (last_hidden * attention_mask.unsqueeze(-1)).sum(1) / attention_mask.sum(-1).unsqueeze(-1)
60
+
61
+ hf_model.pooler = AveragePooler()
62
+ return hf_model, hf_tokenizer, hf_model.pooler
63
+ ```
64
+ ###Using the Model
65
+ Once the model is loaded, you can use it to obtain embeddings for DNA sequences:
66
+
67
+ ```python
68
+ def get_embedding(dna_sequence):
69
+ model, tokenizer, pooler = load_hf_model()
70
+ tokenized_input = tokenizer(dna_sequence, return_tensors="pt")
71
+ with torch.no_grad():
72
+ output = model(**tokenized_input)
73
+ embedding = pooler(output.last_hidden_state, tokenized_input.attention_mask)
74
+ return embedding.numpy()
75
+
76
+ # Example usage
77
+ dna_seq = "ATGCGTACGTAGCTAGCTAGC"
78
+ embedding = get_embedding(dna_seq)
79
+ print("Embedding shape:", embedding.shape)
80
+ ```
81
 
82
  ## Training Details
83
 
84
+ ### Dataset
85
+ The training data consists of DNA sequences sampled from various chromosomes across species. The dataset covers **approximately 2% of the human genome**, ensuring generalization across different sequences. Reads are generated using **ART MiSeq** simulation, with variations in insertion and deletion rates.
 
 
 
86
 
87
  ### Training Procedure
88
+ - **Self-Supervised Learning:** Contrastive loss-based training.
89
+ - **Dynamic Length Sequences:** DNA fragments of length 800-2000 with reads sampled in [150, 500].
90
+ - **Noise Augmentation:** 1-5% random base substitutions in 40% of training reads.
91
+ - **Batch Size:** 16 with gradient accumulation.
 
 
 
 
 
 
 
 
 
 
 
 
 
92
 
93
  ## Evaluation
94
 
95
+ The model was evaluated against traditional aligners (Bowtie-2) and other Transformer-based baselines (DNABERT-2, HyenaDNA). The evaluation metrics include:
96
+ - **Alignment Recall:** >99% for high-quality reads.
97
+ - **Cross-Species Transfer:** Successfully aligns sequences from different species, including *Thermus Aquaticus* and *Rattus Norvegicus*.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98
 
99
+ ## Citation
100
 
101
+ If you use this model, please cite:
102
 
103
+ ```bibtex
104
+ @article{holur2023dna2vec,
105
+ title={Embed-Search-Align: DNA Sequence Alignment using Transformer models},
106
+ author={Holur, Pavan and others},
107
+ journal={Bioinformatics},
108
+ year={2023}
109
+ }
110
+ ```
111
 
112
+ For more details, check the [full paper](https://arxiv.org/abs/2309.11087v6).