rootxhacker commited on
Commit
c6dbc76
·
verified ·
1 Parent(s): 0e66f74

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +209 -3
README.md CHANGED
@@ -1,3 +1,209 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - yahma/alpaca-cleaned
5
+ ---
6
+ ## Model Details
7
+
8
+ This model builds upon the neuromorphic **Llama-SNN-LTC** base architecture, incorporating **Spiking Neural Networks (SNNs)** and **Liquid Time Constants (LTCs)**, and fine-tunes it specifically for instruction following using the Alpaca Cleaned dataset.
9
+
10
+ **Model Type**: Instruction-Following Language Model with Neuromorphic Enhancements
11
+ **Supported Languages**: English
12
+ **Number of Parameters**: 155.8M
13
+ **Context Length**: 1024 tokens
14
+ **Base Architecture**: Llama with SNN/LTC modifications
15
+ **Base Model**: rootxhacker/arthemis-lm
16
+ **Fine-tuning Data**: Alpaca Cleaned (~52K instruction-response pairs)
17
+
18
+ ### Architecture Features
19
+ - **Spiking Neural Networks** in attention mechanisms for temporal processing
20
+ - **Liquid Time Constants** in feed-forward layers for adaptive dynamics
21
+ - **12-layer transformer backbone** with neuromorphic enhancements
22
+ - **RoPE positional encoding** for sequence understanding
23
+ - **Custom surrogate gradient training** for differentiable spike computation
24
+ - **Instruction-following fine-tuning** for enhanced conversational abilities
25
+
26
+ Here are my major model configurations:
27
+
28
+ ```
29
+ hidden_size = 768
30
+ intermediate_size = 2048
31
+ num_hidden_layers = 12
32
+ num_attention_heads = 12
33
+ num_key_value_heads = 12
34
+ max_position_embeddings = 1024
35
+ vocab_size = 50257
36
+ spiking_threshold = 1.0
37
+ ltc_hidden_size = 256
38
+ ltc_layers = 2
39
+ ```
40
+
41
+ ## Usage
42
+
43
+ ### Install dependencies
44
+ ```bash
45
+ pip install transformers torch numpy
46
+ ```
47
+
48
+ ### Run code!
49
+ ```python
50
+ # Note: This model requires custom implementation due to SNN/LTC architecture
51
+ # Standard transformers library cannot load this model directly
52
+
53
+ # For custom loading, you'll need the specialized architecture:
54
+ from custom_model import LlamaSNNLTCModel
55
+ from transformers import AutoTokenizer
56
+
57
+ # Load tokenizer
58
+ tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
59
+ tokenizer.pad_token = tokenizer.eos_token
60
+
61
+ # Load the instruction-tuned model
62
+ model = LlamaSNNLTCModel.from_pretrained("rootxhacker/arthemis-instruct")
63
+
64
+ # For instruction-following generation
65
+ def generate_instruction_response(instruction, input_text="", model=None, tokenizer=None, max_length=150):
66
+ model.eval()
67
+ device = next(model.parameters()).device
68
+
69
+ # Reset model states for clean generation
70
+ model.reset_states()
71
+
72
+ # Format prompt in Alpaca style
73
+ if input_text.strip():
74
+ prompt = f"### Instruction:\n{instruction}\n\n### Input:\n{input_text}\n\n### Response:\n"
75
+ else:
76
+ prompt = f"### Instruction:\n{instruction}\n\n### Response:\n"
77
+
78
+ inputs = tokenizer(prompt, return_tensors='pt').to(device)
79
+ input_ids = inputs['input_ids']
80
+
81
+ with torch.no_grad():
82
+ for _ in range(max_length - input_ids.shape[1]):
83
+ outputs = model(input_ids)
84
+ logits = outputs['logits'][0, -1, :]
85
+
86
+ # Sample with temperature for more natural responses
87
+ logits = logits / 0.7
88
+ probs = torch.softmax(logits, dim=-1)
89
+ next_token = torch.multinomial(probs, 1)
90
+
91
+ input_ids = torch.cat([input_ids, next_token.unsqueeze(0)], dim=-1)
92
+
93
+ if next_token.item() == tokenizer.eos_token_id:
94
+ break
95
+
96
+ generated = tokenizer.decode(input_ids[0], skip_special_tokens=True)
97
+
98
+ # Extract just the response part
99
+ if "### Response:\n" in generated:
100
+ response = generated.split("### Response:\n")[-1].strip()
101
+ return response
102
+
103
+ return generated
104
+
105
+ # Example usage
106
+ instruction = "Explain what artificial intelligence is in simple terms."
107
+ response = generate_instruction_response(instruction, model=model, tokenizer=tokenizer)
108
+ print(f"Instruction: {instruction}")
109
+ print(f"Response: {response}")
110
+ ```
111
+
112
+
113
+ ## Evaluation
114
+
115
+ I performed evaluation using the standard lm-evaluation-harness setup. Following similar methodology to TinyLlama and MicroLlama, I used acc_norm for most datasets except for winogrande and boolq which used acc as the metrics.
116
+
117
+ ### Results Comparison
118
+
119
+ | Model | Params | Budget | HellaSwag | OBQA | WinoGrande | ARC_e | ARC_c | BoolQ | Avg |
120
+ |-------|--------|--------|-----------|------|------------|-------|-------|-------|-----|
121
+ | **rootxhacker/arthemis-lm** | **155.8M** | **<$50** | **24.65** | **20.60** | **48.10** | **28.20** | **22.20** | **39.80** | **30.59** |
122
+ | google/bert-large-uncased | 336M | N/A | 24.53 | 26.20 | 49.80 | 25.08 | 25.68 | 40.86 | 32.03 |
123
+
124
+
125
+ ## Technical Specifications
126
+
127
+ ```
128
+ Architecture: Llama + Spiking Neural Networks + Liquid Time Constants
129
+ Hidden Size: 768
130
+ Intermediate Size: 2048
131
+ Attention Heads: 12
132
+ Layers: 12
133
+ Max Position Embeddings: 1024
134
+ Vocabulary Size: 50,257
135
+ Spiking Threshold: 1.0
136
+ LTC Hidden Size: 256
137
+ Training Precision: FP32
138
+ Fine-tuning Dataset: Alpaca Cleaned (52K instructions)
139
+ ```
140
+
141
+ ## Training Details
142
+
143
+ The model was fine-tuned from rootxhacker/arthemis-lm using:
144
+ - **Base Model**: rootxhacker/arthemis-lm (pretrained neuromorphic LLM)
145
+ - **Dataset**: Alpaca Cleaned (~52K instruction-response pairs)
146
+ - **Hardware**: Google Colab Pro Plus (A100 GPU)
147
+ - **Training Steps**: 5,000 steps
148
+ - **Batch Size**: 4 with gradient accumulation
149
+ - **Learning Rate**: 5e-5 (lower for fine-tuning)
150
+ - **Precision**: FP32 for stability with neuromorphic components
151
+
152
+ ### Key Features
153
+ - **Instruction Format**: Uses Alpaca's structured instruction format
154
+ - **Response Generation**: Optimized for helpful, accurate responses
155
+ - **Neuromorphic Preservation**: Maintains SNN/LTC benefits during fine-tuning
156
+ - **Budget-Conscious**: Additional fine-tuning cost under $10
157
+
158
+ ## Fine-tuning Process
159
+
160
+ The fine-tuning process involved:
161
+ 1. **Base Model Loading**: Started from the pretrained arthemis-lm checkpoint
162
+ 2. **Data Formatting**: Converted Alpaca instructions to proper format
163
+ 3. **Careful Training**: Lower learning rate to preserve base model knowledge
164
+ 4. **State Management**: Proper handling of SNN/LTC states during training
165
+ 5. **Validation**: Continuous monitoring of instruction-following quality
166
+
167
+
168
+ ## Limitations
169
+
170
+ - **Training Data**: Limited to Alpaca Cleaned dataset scope
171
+ - **Context Length**: Maximum 1024 tokens
172
+ - **Domain**: Primarily English instructions
173
+ - **Custom Architecture**: Requires specialized loading code
174
+ - **Scale**: Smaller than commercial instruction models
175
+
176
+ ## Model Sources
177
+
178
+ - **Repository**: [Coming Soon]
179
+ - **Base Model**: [rootxhacker/arthemis-lm](https://huggingface.co/rootxhacker/arthemis-lm)
180
+ - **Hugging Face**: [rootxhacker/arthemis-instruct](https://huggingface.co/rootxhacker/arthemis-instruct)
181
+
182
+ ## Future Work
183
+
184
+ - Scale instruction dataset for broader capabilities
185
+ - Add multi-turn conversation support
186
+ - Implement reinforcement learning from human feedback (RLHF)
187
+ - Explore specialized instruction types (coding, math, reasoning)
188
+ - Compare instruction-following efficiency with standard transformers
189
+
190
+ ## Acknowledgments
191
+
192
+ Special thanks to **keeeeenw** for the inspiration and open-source MicroLlama project, which demonstrated that impressive language models can be built on a budget. This work extends those principles to instruction-following capabilities while exploring neuromorphic computing approaches.
193
+
194
+ Thanks to the Stanford Alpaca team for the high-quality instruction dataset that made this fine-tuning possible.
195
+
196
+ ## Citation
197
+
198
+ ```bibtex
199
+ @misc{arthemis-instruct-2024,
200
+ title={Arthemis-Instruct: A Neuromorphic Instruction-Following Model with Spiking Neural Networks and Liquid Time Constants},
201
+ author={rootxhacker},
202
+ year={2024},
203
+ howpublished={\url{https://huggingface.co/rootxhacker/arthemis-instruct}}
204
+ }
205
+ ```
206
+
207
+ ## License
208
+
209
+ Apache License 2.0