File size: 21,936 Bytes
a9abc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae7fe5c
a9abc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae7fe5c
a9abc9f
 
ae7fe5c
a9abc9f
 
ae7fe5c
a9abc9f
 
ae7fe5c
a9abc9f
 
 
 
 
ae7fe5c
a9abc9f
 
 
 
 
 
 
 
 
ae7fe5c
a9abc9f
 
 
 
 
 
 
 
 
 
 
 
 
ae7fe5c
 
a9abc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae7fe5c
 
 
a9abc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae7fe5c
 
 
 
a9abc9f
ae7fe5c
a9abc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae7fe5c
 
 
 
a9abc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f4a6f2
 
 
ae7fe5c
a9abc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae7fe5c
a9abc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae7fe5c
a9abc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae7fe5c
a9abc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae7fe5c
 
 
 
a9abc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
---
base_model: BAAI/bge-base-en-v1.5
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3696
- loss:MultipleNegativesRankingLoss
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: EmbeddingSimEval
      type: EmbeddingSimEval
    metrics:
    - type: pearson_cosine
      value: .nan
      name: Pearson Cosine
    - type: spearman_cosine
      value: .nan
      name: Spearman Cosine
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: BinaryClassifEval
      type: BinaryClassifEval
    metrics:
    - type: cosine_accuracy
      value: 0.8
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.652718186378479
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.888888888888889
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.652718186378479
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 1.0
      name: Cosine Precision
    - type: cosine_recall
      value: 0.8
      name: Cosine Recall
    - type: cosine_ap
      value: 1.0
      name: Cosine Ap
    - type: cosine_mcc
      value: 0.0
      name: Cosine Mcc
---

# SentenceTransformer based on BAAI/bge-base-en-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("model")
# Run inference
sentences = [
    'The weather is lovely today.',
    "It's so sunny outside!",
    'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity

* Dataset: `EmbeddingSimEval`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value   |
|:--------------------|:--------|
| pearson_cosine      | nan     |
| **spearman_cosine** | **nan** |

#### Binary Classification

* Dataset: `BinaryClassifEval`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                    | Value   |
|:--------------------------|:--------|
| cosine_accuracy           | 0.8     |
| cosine_accuracy_threshold | 0.6527  |
| cosine_f1                 | 0.8889  |
| cosine_f1_threshold       | 0.6527  |
| cosine_precision          | 1.0     |
| cosine_recall             | 0.8     |
| **cosine_ap**             | **1.0** |
| cosine_mcc                | 0.0     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 3,696 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | label                        |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------|
  | type    | string                                                                            | string                                                                            | int                          |
  | details | <ul><li>min: 37 tokens</li><li>mean: 40.4 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 49 tokens</li><li>mean: 62.2 tokens</li><li>max: 85 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
* Samples:
  | sentence1                                                                                                                                                      | sentence2                                                                                                                                                                                                                                                                                              | label          |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>Quelle proportion des dépenses pour l'installation de bornes de recharge électrique peut être couverte par la région Île-de-France?</code>               | <code>Nature de l'aide: La Région participera à hauteur de 50% de la dépense supportée par le maître d’ouvrage plafonnée en fonction du type de bornes</code>                                                                                                                                          | <code>1</code> |
  | <code>Quels types de projets sont éligibles pour obtenir un financement de la Région Île-de-France dans le cadre du développement de l'électromobilité?</code> | <code>Type de project: Le dispositif a pour objet le financement : Des études d’élaboration d’un document stratégique,De l’installation ou la mise à niveau des IRVE situées sur le domaine public francilien, respectant les critères du label régional et s’inscrivant dans un plan d’actions</code> | <code>1</code> |
  | <code>Quelle est la démarche à suivre pour déposer une demande de subvention concernant l'électromobilité en Île-de-France?</code>                             | <code>Procédures et démarches: Déposez sur mesdemarches.iledefrance.fr votre dossier de demande de subvention présentant le projet de manière précise et comportant toutes les pièces permettant l’instruction du dossier, réputé complet, par les services de la Région</code>                        | <code>1</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Evaluation Dataset

#### json

* Dataset: json
* Size: 687 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 687 samples:
  |         | sentence1                                                                         | sentence2                                                                          | label                        |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------|
  | type    | string                                                                            | string                                                                             | int                          |
  | details | <ul><li>min: 24 tokens</li><li>mean: 33.6 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 37 tokens</li><li>mean: 90.4 tokens</li><li>max: 257 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
* Samples:
  | sentence1                                                                                                                                                 | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | label          |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>Sous quelles conditions mon centre de formation en apprentissage peut-il être éligible à une subvention pour des investissements?</code>            | <code>Le dispositif est accessible à tous les OFA sous réserve de remplir les 5 conditions suivantes : Dispenser une activité apprentissage ayant obtenu une certification,Dispenser des formations en apprentissage sur le territoire francilien depuis au moins 1 an en qualité de CFA, d’OFA ou d’UFA,Présenter un projet d’investissement prévu pour la dispense de formations en apprentissage sur le territoire francilien,Être propriétaire du bien pour lequel une subvention est sollicitée ou titulaire d’un bail récemment renouvelé (ou engagement du propriétaire à renouveler le bail), en propre ou sous la forme de SCI, et assurant la maîtrise d’ouvrage des travaux d’investissement,Présenter un besoin de financement sur le projet d’investissement ne pouvant être pris en charge au titre des fonds propres de la structure et de tiers financeurs</code> | <code>1</code> |
  | <code>Est-ce que ma structure qui dispense des formations en apprentissage doit avoir une certaine ancienneté pour bénéficier de l'aide régionale?</code> | <code>Dispenser des formations en apprentissage sur le territoire francilien depuis au moins 1 an en qualité de CFA, d’OFA ou d’UFA</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <code>1</code> |
  | <code>Comment dois-je procéder pour soumettre ma demande de soutien à l'investissement pour mon organisme de formation?</code>                            | <code>L'organisme doit déposer sa demande et les pièces justificatives via le portail mesdemarches.iledefrance.fr</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <code>1</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 2
- `per_device_eval_batch_size`: 2
- `num_train_epochs`: 2
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 2
- `per_device_eval_batch_size`: 2
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch | Step | Validation Loss | EmbeddingSimEval_spearman_cosine | BinaryClassifEval_cosine_ap |
|:-----:|:----:|:---------------:|:--------------------------------:|:---------------------------:|
| 1.0   | 3    | 0.2267          | nan                              | 1.0                         |
| 2.0   | 6    | 0.2448          | nan                              | 1.0                         |


### Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.3.0
- Accelerate: 1.1.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->