rodrfons commited on
Commit
3e65357
·
1 Parent(s): 440fa99

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1886.52 +/- 24.26
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a288700245e4a9139515fe0a2af99f7fa30240a2555665645ec8b40b44aaf3f
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5ce88c0dc0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5ce88c0e50>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5ce88c0ee0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5ce88c0f70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5ce88c2040>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5ce88c20d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5ce88c2160>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5ce88c21f0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f5ce88c2280>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5ce88c2310>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5ce88c23a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5ce88c2430>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f5ce88a9740>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1678305856629290263,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMIugr76UGe/5seVvmIjGkBSa3Q8146fv79BpL6Kpcc+KGPwvzcmg8DNJGm+10WFv/yjdj+KEkzARk8ivXTAqz8/8rY/oLDGvopN0j4yx7m/nmNNv6UXisDBnGs/PIdOP2dr0L8n6KQ+vfPAv9gDmT96E10/4X9SvweILL62S2Y/aXsRv0kJC8ASS9C+2dH8vrSCDz91eba/fvyYPnrNtz4wrqc+UNlfPyrbaD7uoGm/DyV2v04Gnz9yFeA+hcXlP30/9b42bS+/cA+svld+wT+qOB0/J+ikPr3zwL8fJla/xBHPvRGpB7/BBSs+Dbc9P00mf7+lY1W/5uUMvoG78b1+ac+/1QBBPwUUHj/Kg2A/ut7SPboVqL00PqA+QUAIQNakoj+mFjW/QxOXvigPA8CbSV2/SVKdPz38vD9gMR48qjgdPyfopD6988C/2AOZP0cSgz+QXUC/Km6XvQ2D0j+LW6e/GOmYPz3Id79jPSG/iPD1PkP4eD/e1Yg+P3YRv9x6O7yaWXs+g1QaP4bbKL46SFe/NPR9v0+KY7/3T/M+JOi0vmAEAj+Nvsc+t83Mv6o4HT8n6KQ+FNMpPx8mVr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABiH4Q1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlZQKvgAAAABg6ADAAAAAAJzIJb0AAAAAopLiPwAAAABH5Gq9AAAAAOw96z8AAAAA6tTgOgAAAADeb9y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtcHvNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEwwvbsAAAAA1rDrvwAAAABZct89AAAAAH678z8AAAAA2zP4PQAAAACYGOs/AAAAAH+Rl70AAAAAQcjrvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHdqgTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBGGuO9AAAAAIbC9L8AAAAA/p3gvQAAAACYjfs/AAAAAFjkMj0AAAAAUh3pPwAAAAB3ee+9AAAAABMz6r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUrs22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZU7oPQAAAAAM2fa/AAAAAJOqyL0AAAAAjwnsPwAAAADlhjk9AAAAAAGR6T8AAAAADRPOPQAAAADN9Pu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQISC71EmY0GMAWyUTegDjAF0lEdAqbSdlqagEnV9lChoBkdAjXSaYE4ecWgHTegDaAhHQKm4JgKnei11fZQoaAZHQIRAMgntv4xoB03oA2gIR0CpuW4g7o0RdX2UKGgGR0CApD3GGVRlaAdN6ANoCEdAqbtVpAUtZnV9lChoBkdAhXxfZVXFLmgHTegDaAhHQKnAoRFqi491fZQoaAZHQIDWL2WY4Q1oB03oA2gIR0CpxCYdQwbmdX2UKGgGR0CNBubFS88LaAdN6ANoCEdAqcYB44ZMtnV9lChoBkdAlgPQFPi1iWgHTegDaAhHQKnIpivxH5J1fZQoaAZHQIvtwd6sySFoB03oA2gIR0Cp0AblijL0dX2UKGgGR0CRzr1uR9w4aAdN6ANoCEdAqdNiTGHYYnV9lChoBkdAlglTVDrquGgHTegDaAhHQKnUpvJiiIt1fZQoaAZHQJVYhb0OEuhoB03oA2gIR0Cp1njbi6xxdX2UKGgGR0CUrjl+EytWaAdN6ANoCEdAqdwYFaB7NXV9lChoBkdAl0wwg9vCM2gHTegDaAhHQKnfd60pmVZ1fZQoaAZHQJJsGG21D0FoB03oA2gIR0Cp4L2NvOyFdX2UKGgGR0CVFLfOD8LsaAdN6ANoCEdAqeLIEGJN03V9lChoBkdAkde393r2QGgHTegDaAhHQKnq8/etSyd1fZQoaAZHQJN/7CHh0hhoB03oA2gIR0Cp7tZAIIGAdX2UKGgGR0CYZueJYT0yaAdN6ANoCEdAqfAR75VOsXV9lChoBkdAlq2DibUgCGgHTegDaAhHQKnx6m1IAfd1fZQoaAZHQJffs5Jbt7doB03oA2gIR0Cp91wZGax5dX2UKGgGR0CUrum+TNdJaAdN6ANoCEdAqfrS3iJfpnV9lChoBkdAm3+mOZLIxWgHTegDaAhHQKn8FFm4Ajp1fZQoaAZHQJjJyVqveP9oB03oA2gIR0Cp/e5XdTHbdX2UKGgGR0CbdlLHMlkZaAdN6ANoCEdAqgTMRxtHhHV9lChoBkdAm1zWYBvJimgHTegDaAhHQKoKEJwbVBl1fZQoaAZHQJr74NAkcCJoB03oA2gIR0CqC6FkhA4XdX2UKGgGR0Ca8Y5vLowFaAdN6ANoCEdAqg1xyfcvd3V9lChoBkdAnCXKsU7CBWgHTegDaAhHQKoS4UXYUWV1fZQoaAZHQJ4DOiaiKzloB03oA2gIR0CqFkEQGwA3dX2UKGgGR0CgHHY4Ia99aAdN6ANoCEdAqhefSUkfLnV9lChoBkdAn/EuhK15SmgHTegDaAhHQKoZdNN8E3d1fZQoaAZHQJ9tLI/7iyZoB03oA2gIR0CqHuqBmPHUdX2UKGgGR0CeM5ahpQDWaAdN6ANoCEdAqiPzZi/fwnV9lChoBkdAnRyykKu0TmgHTegDaAhHQKol5DDTBqN1fZQoaAZHQJ2iNPrOZ9doB03oA2gIR0CqKLm1hLGrdX2UKGgGR0Cc0JbZOBUaaAdN6ANoCEdAqi5d1ZDArXV9lChoBkdAnDu7el9Br2gHTegDaAhHQKoxvZyuIRB1fZQoaAZHQJupQYsNDtxoB03oA2gIR0CqMv1nM+vAdX2UKGgGR0CcxMw8GLUDaAdN6ANoCEdAqjTexptaZHV9lChoBkdAnRTEWqLjxWgHTegDaAhHQKo6T+DvmYB1fZQoaAZHQJwFAbGWD6FoB03oA2gIR0CqPbqtHQQddX2UKGgGR0Cb2GYOlO45aAdN6ANoCEdAqj+KKR+z+nV9lChoBkdAm4/ypm29c2gHTegDaAhHQKpCOKBun/F1fZQoaAZHQJ2orcGkep5oB03oA2gIR0CqSZFlkH2RdX2UKGgGR0CdETFd9lVcaAdN6ANoCEdAqkzTRIBikXV9lChoBkdAnSS0BXCCSWgHTegDaAhHQKpOHIEKVpt1fZQoaAZHQJ01k8PnSv1oB03oA2gIR0CqT+052hZhdX2UKGgGR0CdH7jsUqQSaAdN6ANoCEdAqlWePaL4vnV9lChoBkdAmlpWNR3u/mgHTegDaAhHQKpZHlOGj9J1fZQoaAZHQJyIav4dp7FoB03oA2gIR0CqWl9wvQF+dX2UKGgGR0CclJ0HhS9/aAdN6ANoCEdAqlx1Qfp2U3V9lChoBkdAm6SRASnLq2gHTegDaAhHQKpknO58Sf11fZQoaAZHQJvciCrcTJ1oB03oA2gIR0CqaGcOTaCddX2UKGgGR0CbbP6FdszmaAdN6ANoCEdAqmmndRBNVXV9lChoBkdAm4a5Aprk82gHTegDaAhHQKprhVOsT391fZQoaAZHQJtXUFqzqr1oB03oA2gIR0CqcPkyckMTdX2UKGgGR0CbaeqlgtvoaAdN6ANoCEdAqnReI68xsXV9lChoBkdAm82yKekHlmgHTegDaAhHQKp1oCJ40Mx1fZQoaAZHQJvNrww0waloB03oA2gIR0Cqd3SI55qudX2UKGgGR0CckRXwLE1maAdN6ANoCEdAqn5Z9XtBwHV9lChoBkdAnJ0mOEM9bGgHTegDaAhHQKqDjXU6PsB1fZQoaAZHQJzazP+n62xoB03oA2gIR0CqhTaBqbjMdX2UKGgGR0CcC2XmvGIbaAdN6ANoCEdAqocCpaRp13V9lChoBkdAnKxnvMKTjmgHTegDaAhHQKqMU4Qz1sd1fZQoaAZHQJ2YSDTSb6RoB03oA2gIR0Cqj6zdtVJddX2UKGgGR0CdJZcKw6hhaAdN6ANoCEdAqpEMAeaKDXV9lChoBkdAnQQusT37DWgHTegDaAhHQKqS9r1uivh1fZQoaAZHQJwp35j6N2loB03oA2gIR0CqmJNelbeNdX2UKGgGR0Cckj89fTkRaAdN6ANoCEdAqp2eQfZElXV9lChoBkdAnD4IHcDbJ2gHTegDaAhHQKqfkCMglnh1fZQoaAZHQJx5YEA5q/NoB03oA2gIR0Cqol8u8K5TdX2UKGgGR0CcaCLQXyiFaAdN6ANoCEdAqqghVjqfOHV9lChoBkdAnPBte+mFamgHTegDaAhHQKqrg78vVVh1fZQoaAZHQJ62+ILw4KhoB03oA2gIR0CqrMHggow3dX2UKGgGR0CbihFZxJd0aAdN6ANoCEdAqq6eIdlunHV9lChoBkdAnZ6M0tRNy2gHTegDaAhHQKq0IDKYAsF1fZQoaAZHQJ4RRT2nKnxoB03oA2gIR0Cqt6+QuEmIdX2UKGgGR0CdjdhbGFSLaAdN6ANoCEdAqrmLv1DjR3V9lChoBkdAniF+2NNrTGgHTegDaAhHQKq8POlfqot1fZQoaAZHQJ9ZpggHNX5oB03oA2gIR0Cqw5bu2JBPdX2UKGgGR0CfEqvr4WUKaAdN6ANoCEdAqsb4CuEEknV9lChoBkdAnxWFk1/DtWgHTegDaAhHQKrIL3QD3dt1fZQoaAZHQJ/zMFpwjt5oB03oA2gIR0CqygPW6K+BdX2UKGgGR0CeOz/etSydaAdN6ANoCEdAqs+K6e5Fw3V9lChoBkdAnzU08q4H5mgHTegDaAhHQKrS2iaiKzl1fZQoaAZHQJ7oRqynk1doB03oA2gIR0Cq1CdsSCe3dX2UKGgGR0CfDM4CIUJwaAdN6ANoCEdAqtY8SPEKmnV9lChoBkdAnPUz3ueBhGgHTegDaAhHQKreNy08eS11fZQoaAZHQJ1ChlZowmFoB03oA2gIR0Cq4fuCoS+QdX2UKGgGR0CedAPS2H+IaAdN6ANoCEdAquNDAzpHJHV9lChoBkdAnZuJOerdWWgHTegDaAhHQKrlFg/keZJ1fZQoaAZHQKB0/2Rq46RoB03oA2gIR0Cq6oEXk5p8dX2UKGgGR0CgpOM10knkaAdN6ANoCEdAqu3kjxCpm3V9lChoBkdAoN5HGVAzHmgHTegDaAhHQKrvNd2xIJ91fZQoaAZHQJ/5ygQHzH1oB03oA2gIR0Cq8ROXu3MIdX2UKGgGR0CeMKLKmsNlaAdN6ANoCEdAqve+DQJHAnV9lChoBkdAnH2tdu5z52gHTegDaAhHQKr9EhA4XGh1fZQoaAZHQJzhCrzXjENoB03oA2gIR0Cq/qTWXkYGdX2UKGgGR0Cdwsa4MF2WaAdN6ANoCEdAqwByAJ9iMHVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8072a74b85e703177b0b8fd5684276d0f8e3412dcc6c774b4bfde58a8c548e36
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bac5b19c1596290496f2edb367c6d5dfa068c2b7b04aaf4cd07187035beb5154
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5ce88c0dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5ce88c0e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5ce88c0ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5ce88c0f70>", "_build": "<function ActorCriticPolicy._build at 0x7f5ce88c2040>", "forward": "<function ActorCriticPolicy.forward at 0x7f5ce88c20d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5ce88c2160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5ce88c21f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5ce88c2280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5ce88c2310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5ce88c23a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5ce88c2430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5ce88a9740>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678305856629290263, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMIugr76UGe/5seVvmIjGkBSa3Q8146fv79BpL6Kpcc+KGPwvzcmg8DNJGm+10WFv/yjdj+KEkzARk8ivXTAqz8/8rY/oLDGvopN0j4yx7m/nmNNv6UXisDBnGs/PIdOP2dr0L8n6KQ+vfPAv9gDmT96E10/4X9SvweILL62S2Y/aXsRv0kJC8ASS9C+2dH8vrSCDz91eba/fvyYPnrNtz4wrqc+UNlfPyrbaD7uoGm/DyV2v04Gnz9yFeA+hcXlP30/9b42bS+/cA+svld+wT+qOB0/J+ikPr3zwL8fJla/xBHPvRGpB7/BBSs+Dbc9P00mf7+lY1W/5uUMvoG78b1+ac+/1QBBPwUUHj/Kg2A/ut7SPboVqL00PqA+QUAIQNakoj+mFjW/QxOXvigPA8CbSV2/SVKdPz38vD9gMR48qjgdPyfopD6988C/2AOZP0cSgz+QXUC/Km6XvQ2D0j+LW6e/GOmYPz3Id79jPSG/iPD1PkP4eD/e1Yg+P3YRv9x6O7yaWXs+g1QaP4bbKL46SFe/NPR9v0+KY7/3T/M+JOi0vmAEAj+Nvsc+t83Mv6o4HT8n6KQ+FNMpPx8mVr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABiH4Q1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlZQKvgAAAABg6ADAAAAAAJzIJb0AAAAAopLiPwAAAABH5Gq9AAAAAOw96z8AAAAA6tTgOgAAAADeb9y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtcHvNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEwwvbsAAAAA1rDrvwAAAABZct89AAAAAH678z8AAAAA2zP4PQAAAACYGOs/AAAAAH+Rl70AAAAAQcjrvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHdqgTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBGGuO9AAAAAIbC9L8AAAAA/p3gvQAAAACYjfs/AAAAAFjkMj0AAAAAUh3pPwAAAAB3ee+9AAAAABMz6r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUrs22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZU7oPQAAAAAM2fa/AAAAAJOqyL0AAAAAjwnsPwAAAADlhjk9AAAAAAGR6T8AAAAADRPOPQAAAADN9Pu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQISC71EmY0GMAWyUTegDjAF0lEdAqbSdlqagEnV9lChoBkdAjXSaYE4ecWgHTegDaAhHQKm4JgKnei11fZQoaAZHQIRAMgntv4xoB03oA2gIR0CpuW4g7o0RdX2UKGgGR0CApD3GGVRlaAdN6ANoCEdAqbtVpAUtZnV9lChoBkdAhXxfZVXFLmgHTegDaAhHQKnAoRFqi491fZQoaAZHQIDWL2WY4Q1oB03oA2gIR0CpxCYdQwbmdX2UKGgGR0CNBubFS88LaAdN6ANoCEdAqcYB44ZMtnV9lChoBkdAlgPQFPi1iWgHTegDaAhHQKnIpivxH5J1fZQoaAZHQIvtwd6sySFoB03oA2gIR0Cp0AblijL0dX2UKGgGR0CRzr1uR9w4aAdN6ANoCEdAqdNiTGHYYnV9lChoBkdAlglTVDrquGgHTegDaAhHQKnUpvJiiIt1fZQoaAZHQJVYhb0OEuhoB03oA2gIR0Cp1njbi6xxdX2UKGgGR0CUrjl+EytWaAdN6ANoCEdAqdwYFaB7NXV9lChoBkdAl0wwg9vCM2gHTegDaAhHQKnfd60pmVZ1fZQoaAZHQJJsGG21D0FoB03oA2gIR0Cp4L2NvOyFdX2UKGgGR0CVFLfOD8LsaAdN6ANoCEdAqeLIEGJN03V9lChoBkdAkde393r2QGgHTegDaAhHQKnq8/etSyd1fZQoaAZHQJN/7CHh0hhoB03oA2gIR0Cp7tZAIIGAdX2UKGgGR0CYZueJYT0yaAdN6ANoCEdAqfAR75VOsXV9lChoBkdAlq2DibUgCGgHTegDaAhHQKnx6m1IAfd1fZQoaAZHQJffs5Jbt7doB03oA2gIR0Cp91wZGax5dX2UKGgGR0CUrum+TNdJaAdN6ANoCEdAqfrS3iJfpnV9lChoBkdAm3+mOZLIxWgHTegDaAhHQKn8FFm4Ajp1fZQoaAZHQJjJyVqveP9oB03oA2gIR0Cp/e5XdTHbdX2UKGgGR0CbdlLHMlkZaAdN6ANoCEdAqgTMRxtHhHV9lChoBkdAm1zWYBvJimgHTegDaAhHQKoKEJwbVBl1fZQoaAZHQJr74NAkcCJoB03oA2gIR0CqC6FkhA4XdX2UKGgGR0Ca8Y5vLowFaAdN6ANoCEdAqg1xyfcvd3V9lChoBkdAnCXKsU7CBWgHTegDaAhHQKoS4UXYUWV1fZQoaAZHQJ4DOiaiKzloB03oA2gIR0CqFkEQGwA3dX2UKGgGR0CgHHY4Ia99aAdN6ANoCEdAqhefSUkfLnV9lChoBkdAn/EuhK15SmgHTegDaAhHQKoZdNN8E3d1fZQoaAZHQJ9tLI/7iyZoB03oA2gIR0CqHuqBmPHUdX2UKGgGR0CeM5ahpQDWaAdN6ANoCEdAqiPzZi/fwnV9lChoBkdAnRyykKu0TmgHTegDaAhHQKol5DDTBqN1fZQoaAZHQJ2iNPrOZ9doB03oA2gIR0CqKLm1hLGrdX2UKGgGR0Cc0JbZOBUaaAdN6ANoCEdAqi5d1ZDArXV9lChoBkdAnDu7el9Br2gHTegDaAhHQKoxvZyuIRB1fZQoaAZHQJupQYsNDtxoB03oA2gIR0CqMv1nM+vAdX2UKGgGR0CcxMw8GLUDaAdN6ANoCEdAqjTexptaZHV9lChoBkdAnRTEWqLjxWgHTegDaAhHQKo6T+DvmYB1fZQoaAZHQJwFAbGWD6FoB03oA2gIR0CqPbqtHQQddX2UKGgGR0Cb2GYOlO45aAdN6ANoCEdAqj+KKR+z+nV9lChoBkdAm4/ypm29c2gHTegDaAhHQKpCOKBun/F1fZQoaAZHQJ2orcGkep5oB03oA2gIR0CqSZFlkH2RdX2UKGgGR0CdETFd9lVcaAdN6ANoCEdAqkzTRIBikXV9lChoBkdAnSS0BXCCSWgHTegDaAhHQKpOHIEKVpt1fZQoaAZHQJ01k8PnSv1oB03oA2gIR0CqT+052hZhdX2UKGgGR0CdH7jsUqQSaAdN6ANoCEdAqlWePaL4vnV9lChoBkdAmlpWNR3u/mgHTegDaAhHQKpZHlOGj9J1fZQoaAZHQJyIav4dp7FoB03oA2gIR0CqWl9wvQF+dX2UKGgGR0CclJ0HhS9/aAdN6ANoCEdAqlx1Qfp2U3V9lChoBkdAm6SRASnLq2gHTegDaAhHQKpknO58Sf11fZQoaAZHQJvciCrcTJ1oB03oA2gIR0CqaGcOTaCddX2UKGgGR0CbbP6FdszmaAdN6ANoCEdAqmmndRBNVXV9lChoBkdAm4a5Aprk82gHTegDaAhHQKprhVOsT391fZQoaAZHQJtXUFqzqr1oB03oA2gIR0CqcPkyckMTdX2UKGgGR0CbaeqlgtvoaAdN6ANoCEdAqnReI68xsXV9lChoBkdAm82yKekHlmgHTegDaAhHQKp1oCJ40Mx1fZQoaAZHQJvNrww0waloB03oA2gIR0Cqd3SI55qudX2UKGgGR0CckRXwLE1maAdN6ANoCEdAqn5Z9XtBwHV9lChoBkdAnJ0mOEM9bGgHTegDaAhHQKqDjXU6PsB1fZQoaAZHQJzazP+n62xoB03oA2gIR0CqhTaBqbjMdX2UKGgGR0CcC2XmvGIbaAdN6ANoCEdAqocCpaRp13V9lChoBkdAnKxnvMKTjmgHTegDaAhHQKqMU4Qz1sd1fZQoaAZHQJ2YSDTSb6RoB03oA2gIR0Cqj6zdtVJddX2UKGgGR0CdJZcKw6hhaAdN6ANoCEdAqpEMAeaKDXV9lChoBkdAnQQusT37DWgHTegDaAhHQKqS9r1uivh1fZQoaAZHQJwp35j6N2loB03oA2gIR0CqmJNelbeNdX2UKGgGR0Cckj89fTkRaAdN6ANoCEdAqp2eQfZElXV9lChoBkdAnD4IHcDbJ2gHTegDaAhHQKqfkCMglnh1fZQoaAZHQJx5YEA5q/NoB03oA2gIR0Cqol8u8K5TdX2UKGgGR0CcaCLQXyiFaAdN6ANoCEdAqqghVjqfOHV9lChoBkdAnPBte+mFamgHTegDaAhHQKqrg78vVVh1fZQoaAZHQJ62+ILw4KhoB03oA2gIR0CqrMHggow3dX2UKGgGR0CbihFZxJd0aAdN6ANoCEdAqq6eIdlunHV9lChoBkdAnZ6M0tRNy2gHTegDaAhHQKq0IDKYAsF1fZQoaAZHQJ4RRT2nKnxoB03oA2gIR0Cqt6+QuEmIdX2UKGgGR0CdjdhbGFSLaAdN6ANoCEdAqrmLv1DjR3V9lChoBkdAniF+2NNrTGgHTegDaAhHQKq8POlfqot1fZQoaAZHQJ9ZpggHNX5oB03oA2gIR0Cqw5bu2JBPdX2UKGgGR0CfEqvr4WUKaAdN6ANoCEdAqsb4CuEEknV9lChoBkdAnxWFk1/DtWgHTegDaAhHQKrIL3QD3dt1fZQoaAZHQJ/zMFpwjt5oB03oA2gIR0CqygPW6K+BdX2UKGgGR0CeOz/etSydaAdN6ANoCEdAqs+K6e5Fw3V9lChoBkdAnzU08q4H5mgHTegDaAhHQKrS2iaiKzl1fZQoaAZHQJ7oRqynk1doB03oA2gIR0Cq1CdsSCe3dX2UKGgGR0CfDM4CIUJwaAdN6ANoCEdAqtY8SPEKmnV9lChoBkdAnPUz3ueBhGgHTegDaAhHQKreNy08eS11fZQoaAZHQJ1ChlZowmFoB03oA2gIR0Cq4fuCoS+QdX2UKGgGR0CedAPS2H+IaAdN6ANoCEdAquNDAzpHJHV9lChoBkdAnZuJOerdWWgHTegDaAhHQKrlFg/keZJ1fZQoaAZHQKB0/2Rq46RoB03oA2gIR0Cq6oEXk5p8dX2UKGgGR0CgpOM10knkaAdN6ANoCEdAqu3kjxCpm3V9lChoBkdAoN5HGVAzHmgHTegDaAhHQKrvNd2xIJ91fZQoaAZHQJ/5ygQHzH1oB03oA2gIR0Cq8ROXu3MIdX2UKGgGR0CeMKLKmsNlaAdN6ANoCEdAqve+DQJHAnV9lChoBkdAnH2tdu5z52gHTegDaAhHQKr9EhA4XGh1fZQoaAZHQJzhCrzXjENoB03oA2gIR0Cq/qTWXkYGdX2UKGgGR0Cdwsa4MF2WaAdN6ANoCEdAqwByAJ9iMHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14ad83daf2da6f684831fcc7d4c65a6ecedf399ad4ba5d659ee8ace482ad9a49
3
+ size 1228469
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1886.523443346098, "std_reward": 24.26009834505475, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-08T21:17:34.872211"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f793642047fd521fa029afe8c7771056b0d280d1dedc451c26543b0e9385d6
3
+ size 2136