--- base_model: Qwen/Qwen2.5-1.5B library_name: peft license: apache-2.0 metrics: - accuracy tags: - generated_from_trainer model-index: - name: qwen2.5-hh-rm results: [] --- # qwen2.5-hh-rm This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8474 - Accuracy: 0.5493 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 8 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.5645 | 1.0 | 5310 | 0.7363 | 0.5588 | | 0.6449 | 2.0 | 10620 | 0.7377 | 0.5521 | | 0.6083 | 3.0 | 15930 | 0.7829 | 0.5561 | | 0.6265 | 4.0 | 21240 | 0.7739 | 0.5490 | | 0.4989 | 5.0 | 26550 | 0.8474 | 0.5493 | ### Framework versions - PEFT 0.12.0 - Transformers 4.37.0 - Pytorch 2.1.2+cu121 - Datasets 2.14.5 - Tokenizers 0.15.2