--- license: apache-2.0 tags: - whisper - fine-tuned - malay - speech-to-text datasets: - custom-dataset model-index: - name: whisper-RMTfinetuned results: - task: type: automatic-speech-recognition dataset: name: Malay Audio Datasets type: custom metrics: - type: wer value: 5.6 --- # Whisper-RMTfinetuned This model is a fine-tuned version of OpenAI's Whisper model for **Malay speech-to-text transcription**. ## **Model Description** - **Base Model**: OpenAI Whisper-Small - **Fine-Tuned on**: Malay language dataset - **Intended Use**: Speech recognition for Malay audio ## **Usage** ```python from transformers import WhisperProcessor, WhisperForConditionalGeneration import torch model = WhisperForConditionalGeneration.from_pretrained("rmtariq/whisper-RMTfinetuned") processor = WhisperProcessor.from_pretrained("rmtariq/whisper-RMTfinetuned") audio = "/path/to/audio.wav" input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features with torch.no_grad(): predicted_ids = model.generate(input_features) transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] print(transcription)