{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7abb25970180>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7abb25970220>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7abb259702c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7abb25970360>", "_build": "<function ActorCriticPolicy._build at 0x7abb25970400>", "forward": "<function ActorCriticPolicy.forward at 0x7abb259704a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7abb25970540>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7abb259705e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7abb25970680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7abb25970720>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7abb259707c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7abb25970860>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7abb27332380>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1736888526693244359, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHBeoT4Tfm8/ZdWuPSKV374MRLE+CENgvgAAAAAAAAAAutoAvkWjsj+yb5G+1zsBv23P0rwSEeC9AAAAAAAAAACa/Wc8T21rP64gUL3fSOe+aZ2avNDVizwAAAAAAAAAAJo+obwpgCG6Cg4vNLtACi8qebI6NTKjswAAgD8AAIA/xkBDvnxttz7z7gs+gZ6dvhwMlr0taDO9AAAAAAAAAABATlk+dcERP7Z5mL1P6r6+6wHwPSLerL0AAAAAAAAAADOnCzw+rJE/sikpvETn+L7iN7I8ohSVuwAAAAAAAAAAcG6CPlHcR73A6lE+DFgKvSrXrb7Yn8a9AACAPwAAgD9mN4Y9w5l9uutb4jlCKyi23UlBO8b6A7kAAIA/AACAP/PKVj5sVaw+Q8aZvmaaqr4RWr+8vtkBvgAAAAAAAAAAZjLPvB8+vTy8goQ9+cf7vYoQ6LtS+go9AAAAAAAAAAAzNYC8w1l+us+vL7SjCZ+vimhxOtZOnjMAAIA/AACAPwoXgr56EqE/OFXTvmyMC78In2K+dgM3vgAAAAAAAAAA5ja/PVynW7rocbU44oXzMxbaaztz3NG3AACAPwAAAABa4L69+l6JPtA+wT33uV6+LrMKvWCgVT0AAAAAAAAAAJph2DwpSES6KEtjNxKoujIbx4s6VmiDtgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJHvi97F86MAWyUTQQBjAF0lEdAlbBZ/oaDPHV9lChoBkdActcu89Oh02gHTQ8BaAhHQJWxXhegL7Z1fZQoaAZHQHJ9BjWkJrtoB00AAWgIR0CVsdTGo73gdX2UKGgGR0Bxqy55JK8MaAdNHAFoCEdAlbHzhgmZ3XV9lChoBkdAcA0z0Yj0MGgHTSgBaAhHQJWx+5wwTM91fZQoaAZHQHB3bKaG5+ZoB000AWgIR0CVsjfV7Qb/dX2UKGgGR0ByxnVmSQo1aAdNCAFoCEdAlbJIu9OARXV9lChoBkdAciEtO2y9mGgHTRoBaAhHQJWyrfTCtRx1fZQoaAZHQHFoYmois4loB00JAWgIR0CVstTINmUXdX2UKGgGR0BxDNb9qDbraAdNAgFoCEdAlbLnrhR64XV9lChoBkdAbm3mjj7yhGgHTQQBaAhHQJWz9Tzd1uB1fZQoaAZHQHEHSmEXcg1oB00iAWgIR0CVtl544ZMtdX2UKGgGR0BvxjPBzmwJaAdL6mgIR0CVtnyT6i0wdX2UKGgGR0ByL2dd3SrpaAdL/mgIR0CVuLCEHt4SdX2UKGgGR0ByGIRpUPxyaAdL/2gIR0CVuW/iHZbqdX2UKGgGR0BxCEVTJhfCaAdL+mgIR0CVuy0knkT6dX2UKGgGR0Bwxv9pAUtaaAdNCgFoCEdAlbtHVXmvGXV9lChoBkdAcVvOavzOHGgHTUYBaAhHQJW7sFbFCLN1fZQoaAZHQHJJPvfCQ91oB00FAWgIR0CVu8b7CSA6dX2UKGgGR0Bwf1nctXgcaAdL8GgIR0CVvGgMMI/rdX2UKGgGR0ByadMpPRAsaAdNAwFoCEdAlb0AXQ+lj3V9lChoBkdAcsxBvJiiI2gHTQUBaAhHQJW9ZbLU1AJ1fZQoaAZHQHHNiEHt4RpoB00oAWgIR0CVvgaxHG0edX2UKGgGR0BwXhB4Uvf1aAdNNQFoCEdAlb4oQnQY13V9lChoBkdAcuq3hn8KomgHTSkBaAhHQJW+Ool2Ned1fZQoaAZHQHI7+m3vx6RoB0v2aAhHQJXBt2zOX3R1fZQoaAZHQHAV9HhCMP1oB01MAWgIR0CVwoUAT7EYdX2UKGgGR0ByPJ81Gb1AaAdNPQFoCEdAlcUcxj8UEnV9lChoBkdAcixJAdGRWGgHTRsBaAhHQJXGcfhddE91fZQoaAZHQG+1/2kBS1poB0vxaAhHQJXHInPVurJ1fZQoaAZHQG7VKIi1RchoB0v/aAhHQJXHyGGmDUV1fZQoaAZHQHJZApvxYq5oB0v2aAhHQJXH44ZMtbt1fZQoaAZHQHMlnmzSkTJoB00DAWgIR0CVyJ02cawVdX2UKGgGR0Bu0Al2NedDaAdL6GgIR0CVyLdVNpM6dX2UKGgGR0ByQWOOsDGMaAdNNgFoCEdAlcjDundfs3V9lChoBkdAct5mp2ll9WgHTQEBaAhHQJXJCDZlFtt1fZQoaAZHQHJ17cGkep5oB03YAmgIR0CVybtcv/R3dX2UKGgGR0BtbKR8twrEaAdNEAFoCEdAlcnx+BpYcXV9lChoBkdAcquGhmGucWgHTQYBaAhHQJXKN/iHZbp1fZQoaAZHQHJr43R5TqBoB00EAWgIR0CVykHQQcxTdX2UKGgGR0BzIeeDnNgSaAdL/2gIR0CVzHIPbwjMdX2UKGgGR0BwX/fhuO0caAdNYwFoCEdAleBF9a2Wp3V9lChoBkdAVBSEGqxTsWgHS6doCEdAleFLjHXEqHV9lChoBkdAcYI2x6fJ3mgHTSIBaAhHQJXhcmNR3vB1fZQoaAZHQG2HMd1dPcloB0v0aAhHQJXhr3Cbc451fZQoaAZHQHDJe5z5oGpoB0vuaAhHQJXi2qCHymR1fZQoaAZHQG9dwlruYyBoB00LAWgIR0CV44GcnVoYdX2UKGgGR0ByFMvg3tKJaAdNAQFoCEdAleQZMDfWMHV9lChoBkdAcjZosI3R5WgHS9loCEdAleTiQtBfKXV9lChoBkdAcTzM98qnWWgHTRgBaAhHQJXlpw4sEq51fZQoaAZHQG+09RBNVR1oB00TAWgIR0CV5baS9ugpdX2UKGgGR0BzIgL7XQMQaAdNPQFoCEdAleZa/ATIvXV9lChoBkdAcPzBoEjgRGgHTTUBaAhHQJXmiWdEsrd1fZQoaAZHQHCdgZCOWB1oB00SAWgIR0CV5oprk8zRdX2UKGgGR0BwvKUKRdQgaAdNCgFoCEdAleaf/7zkIXV9lChoBkdAczcB06o2oGgHTScBaAhHQJXm4qrilzl1fZQoaAZHQHBvXmaH9FZoB0vwaAhHQJXoidvsJIF1fZQoaAZHQHKjciSq2jRoB00lAWgIR0CV6ch4+r2hdX2UKGgGR0Bw4WZjQRf4aAdNEwFoCEdAlesGPYFqz3V9lChoBkdAcs6akhzNlmgHTRcBaAhHQJXraCI1tO51fZQoaAZHQHDWVqBVdX1oB00aAWgIR0CV68g3cYZVdX2UKGgGR0BPL0j1PFefaAdLqmgIR0CV7H3z+WGAdX2UKGgGR0BwiiwfQrtmaAdNCQFoCEdAle6RF7Uoa3V9lChoBkdAcllaKk2xZGgHTS4BaAhHQJXuqJhvze51fZQoaAZHQHFb9kJ8fFJoB01AAWgIR0CV7rTi83+/dX2UKGgGR0BvCRvLowEhaAdL/GgIR0CV7uFUyYXwdX2UKGgGR0BwLoYk3S8baAdL/WgIR0CV7v8pCrtFdX2UKGgGR0BxfxmAbyYpaAdNLQFoCEdAle8z4k/r0XV9lChoBkdAcWg1eSjgymgHS/poCEdAle+JAY51eXV9lChoBkdAcVebL2YfGWgHTRIBaAhHQJXwri704BF1fZQoaAZHQHIZWGh24d9oB00xAWgIR0CV8b5vtMPCdX2UKGgGR0By/gjbBXS0aAdNJQFoCEdAlfHXYYixFHV9lChoBkdAcdHr5ZbILmgHS/BoCEdAlfPJJsfq5nV9lChoBkdAbfTeokzGgmgHTRgBaAhHQJXz/b1yvLZ1fZQoaAZHQG/T2aUiY9hoB00LAWgIR0CV9qwRGtp3dX2UKGgGR0ByufaL4vexaAdNMgFoCEdAlfmUwSJ0n3V9lChoBkdAcCtAhje9BmgHS+xoCEdAlfneYD1XeXV9lChoBkdASxLxgAp8W2gHS95oCEdAlfntdzGPxXV9lChoBkdAcWit8uzyBmgHTQYBaAhHQJX7xusLfDV1fZQoaAZHQHEv9iH6/ItoB009AWgIR0CV/A07bL2YdX2UKGgGR0ByFpE+gUUPaAdNagFoCEdAlf3Pe1rqMXV9lChoBkdAbcmzqKP4mGgHTSgBaAhHQJX+N1MdtEZ1fZQoaAZHQHETnMMZxaRoB00mAWgIR0CV/kxxT850dX2UKGgGR0BygI96kZaWaAdNGwFoCEdAlf6RYq5LAnV9lChoBkdAcbg8YQ8OkWgHTTMBaAhHQJX+k40dilV1fZQoaAZHQHGPWJWNm19oB0vvaAhHQJX/YyULUkR1fZQoaAZHQHIPbYTTOPhoB00fAWgIR0CWAA3d9Dx9dX2UKGgGR0BwmsIMSbpeaAdL/WgIR0CWAXoqkM1CdX2UKGgGR0BwqhDpkf9xaAdNDQFoCEdAlgHpQxesxXV9lChoBkdAcrsuvllsg2gHTUQBaAhHQJYCclme18d1fZQoaAZHQHDTgVwgkkdoB0vsaAhHQJYCsYrJ8v51fZQoaAZHQHLtjvAoG6hoB00SAWgIR0CWBbxOtW+5dX2UKGgGR0Bxn7QokRjCaAdL+WgIR0CWBegFHJ9zdX2UKGgGR0ByJaj3225QaAdNHwFoCEdAlgZWfXf643V9lChoBkdAcN1FfiPyTmgHS/1oCEdAlgd+jEehf3V9lChoBkdAcmdAAyVObmgHTUMBaAhHQJYHtTfixV11fZQoaAZHQHFXPTodMkBoB00JAWgIR0CWCEIhQm/ndX2UKGgGR0ByUxsGgSOBaAdNFwFoCEdAlgjh51Ng0HV9lChoBkdAbxUN96Tnq2gHTQIBaAhHQJYI7Tuv2Xd1fZQoaAZHQG67Xko4MnZoB00aAWgIR0CWCTCjUNKAdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |