rishikeshgautam commited on
Commit
cb5d8bd
·
verified ·
1 Parent(s): 8ba4f0b

Model save

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: google/muril-base-cased
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ - precision
11
+ - recall
12
+ model-index:
13
+ - name: nepali-grammar-20250215_1722
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # nepali-grammar-20250215_1722
21
+
22
+ This model is a fine-tuned version of [google/muril-base-cased](https://huggingface.co/google/muril-base-cased) on an unknown dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.2446
25
+ - Accuracy: 0.9093
26
+ - F1: 0.9171
27
+ - Precision: 0.9510
28
+ - Recall: 0.8856
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 64
49
+ - eval_batch_size: 128
50
+ - seed: 42
51
+ - gradient_accumulation_steps: 2
52
+ - total_train_batch_size: 128
53
+ - optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
54
+ - lr_scheduler_type: linear
55
+ - lr_scheduler_warmup_ratio: 0.1
56
+ - num_epochs: 3
57
+ - mixed_precision_training: Native AMP
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
62
+ |:-------------:|:------:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
63
+ | 0.25 | 1.0 | 14063 | 0.2447 | 0.9036 | 0.9113 | 0.9524 | 0.8736 |
64
+ | 0.2106 | 2.0 | 28126 | 0.2375 | 0.9088 | 0.9167 | 0.9497 | 0.8859 |
65
+ | 0.1811 | 2.9998 | 42186 | 0.2446 | 0.9093 | 0.9171 | 0.9510 | 0.8856 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.47.0
71
+ - Pytorch 2.5.1+cu121
72
+ - Datasets 3.2.0
73
+ - Tokenizers 0.21.0