File size: 17,748 Bytes
ca61f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
# coding=utf-8
# Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch CCT model."""


from dataclasses import dataclass
from typing import Optional, Tuple, Union

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from transformers.modeling_outputs import ImageClassifierOutputWithNoAttention, ModelOutput
from transformers import PreTrainedModel
from .configuration_cct import CctConfig

# General docstring
_CONFIG_FOR_DOC = "CctConfig"

# Base docstring
_CHECKPOINT_FOR_DOC = "rishabbala/cct_14_7x2_384"
_EXPECTED_OUTPUT_SHAPE = [1, 384]

# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "rishabbala/cct_14_7x2_384"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"


CCT_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "rishabbala/cct_14_7x2_384",
    "rishabbala/cct_14_7x2_224"
    # See all CCT models at https://huggingface.co/models?filter=cct
]


@dataclass
class BaseModelOutputWithSeqPool(ModelOutput):
    """
    Base class for model's outputs, with potential hidden states and attentions.

    Args:
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model prior to sequential pooling.
        hidden_state_post_pool (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model post sequential pooling.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
            shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
            plus the initial embedding outputs.
    """

    last_hidden_state: torch.FloatTensor = None
    hidden_state_post_pool: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None


# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input, drop_prob: float = 0.0, training: bool = False):
    """
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
    however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
    layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
    argument.
    """
    if drop_prob == 0.0 or not training:
        return input
    keep_prob = 1 - drop_prob
    shape = (input.shape[0],) + (1,) * (input.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
    random_tensor.floor_()  # binarize
    output = input.div(keep_prob) * random_tensor
    return output


# Copied from transformers.models.beit.modeling_beit.BeitDropPath
class CctDropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""

    def __init__(self, drop_prob: Optional[float] = None) -> None:
        super().__init__()
        self.drop_prob = drop_prob

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        return drop_path(hidden_states, self.drop_prob, self.training)

    def extra_repr(self) -> str:
        return "p={}".format(self.drop_prob)


class CctConvEmbeddings(nn.Module):
    """
    Performs convolutional tokenization of the input image.
    """

    def __init__(self, config: CctConfig):
        super().__init__()
        self.in_channels = config.in_channels
        self.img_size = config.img_size

        channels_size = [config.in_channels] + config.out_channels
        assert (
            len(channels_size) == config.num_conv_layers + 1
        ), "Ensure that the number output channels matches the number of conv layers"

        self.embedding_layers = nn.ModuleList([])
        for i in range(config.num_conv_layers):
            self.embedding_layers.extend(
                [
                    nn.Conv2d(
                        channels_size[i],
                        channels_size[i + 1],
                        kernel_size=config.conv_kernel_size,
                        stride=config.conv_stride,
                        padding=config.conv_padding,
                        bias=config.conv_bias,
                    ),
                    nn.ReLU(),
                    nn.MaxPool2d(config.pool_kernel_size, stride=config.pool_stride, padding=config.pool_padding),
                ]
            )

    def forward(self, pixel_values):
        for layer in self.embedding_layers:
            pixel_values = layer(pixel_values)
        batch_size, num_channels, height, width = pixel_values.shape
        hidden_size = height * width
        # rearrange "b c h w -> b (h w) c"
        pixel_values = pixel_values.view(batch_size, num_channels, hidden_size).permute(0, 2, 1)
        return pixel_values

    def get_sequence_length(self) -> int:
        return self.forward(torch.zeros((1, self.in_channels, self.img_size, self.img_size))).shape[1]


class CctSelfAttention(nn.Module):
    """
    Attention Module that computes self-attention, given an input hidden_state. Q, K, V are computed implicitly from
    hidden_state
    """

    def __init__(self, embed_dim, num_heads=6, attention_drop_rate=0.1, drop_rate=0.0):
        super().__init__()
        self.num_heads = num_heads
        head_dim = embed_dim // self.num_heads
        self.scale = head_dim**-0.5

        self.qkv = nn.Linear(embed_dim, embed_dim * 3, bias=False)
        self.attn_drop = nn.Dropout(attention_drop_rate)
        self.proj = nn.Linear(embed_dim, embed_dim)
        self.proj_drop = nn.Dropout(drop_rate)

    def forward(self, hidden_state):
        B, N, C = hidden_state.shape
        qkv = self.qkv(hidden_state).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        hidden_state = (attn @ v).transpose(1, 2).reshape(B, N, C)
        hidden_state = self.proj(hidden_state)
        hidden_state = self.proj_drop(hidden_state)
        return hidden_state


class CctStage(nn.Module):
    """
    CCT stage composed of stacked transformer layers
    """

    def __init__(
        self, embed_dim=384, num_heads=6, mlp_ratio=3, drop_rate=0.0, attention_drop_rate=0.1, drop_path_rate=0.0
    ):
        super().__init__()
        dim_feedforward = mlp_ratio * embed_dim
        self.pre_norm = nn.LayerNorm(embed_dim)

        self.linear1 = nn.Linear(embed_dim, dim_feedforward)
        self.norm1 = nn.LayerNorm(embed_dim)
        self.linear2 = nn.Linear(dim_feedforward, embed_dim)
        self.self_attn = CctSelfAttention(
            embed_dim=embed_dim, num_heads=num_heads, attention_drop_rate=attention_drop_rate, drop_rate=drop_rate
        )
        self.dropout1 = nn.Dropout(drop_rate)
        self.dropout2 = nn.Dropout(drop_rate)
        self.drop_path = CctDropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
        self.activation = F.gelu

    def forward(self, hidden_state):
        hidden_state = hidden_state + self.drop_path(self.self_attn(self.pre_norm(hidden_state)))
        hidden_state = self.norm1(hidden_state)
        hidden_state = hidden_state + self.drop_path(
            self.dropout2(self.linear2(self.dropout1(self.activation(self.linear1(hidden_state)))))
        )

        return hidden_state


class CctEncoder(nn.Module):
    """
    Class that combines CctConvEmbeddings and CctStage. Output is of type BaseModelOutputWithSeqPool if return_dict is
    set to True, else the output is a Tuple
    """

    def __init__(self, config: CctConfig, sequence_length: int):
        super().__init__()
        assert sequence_length is not None, "Sequence Length required to initialize positional embedding"

        int(config.embed_dim * config.mlp_ratio)
        self.attention_pool = nn.Linear(config.embed_dim, 1)

        if config.pos_emb_type == "learnable":
            self.positional_emb = nn.Parameter(
                self.learnable_embedding(sequence_length, config.embed_dim), requires_grad=True
            )
        else:
            self.positional_emb = nn.Parameter(
                self.sinusoidal_embedding(sequence_length, config.embed_dim), requires_grad=False
            )

        self.dropout = nn.Dropout(config.drop_rate)
        stochastic_dropout_rate = [
            x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_transformer_layers)
        ]

        self.blocks = nn.ModuleList(
            [
                CctStage(
                    config.embed_dim,
                    config.num_heads,
                    config.mlp_ratio,
                    config.drop_rate,
                    config.attention_drop_rate,
                    stochastic_dropout_rate[i],
                )
                for i in range(config.num_transformer_layers)
            ]
        )
        self.norm = nn.LayerNorm(config.embed_dim)

    def forward(self, pixel_values, output_hidden_states=False, return_dict=True) -> BaseModelOutputWithSeqPool:
        all_hidden_states = ()

        hidden_state = pixel_values + self.positional_emb
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_state,)
        hidden_state = self.dropout(hidden_state)

        for blk in self.blocks:
            hidden_state = blk(hidden_state)
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_state,)

        hidden_state_pre_pool = self.norm(hidden_state)
        if output_hidden_states:
            all_hidden_states = all_hidden_states[:-1] + (hidden_state_pre_pool,)

        seq_pool_attn = F.softmax(self.attention_pool(hidden_state_pre_pool), dim=1)
        hidden_state_post_pool = torch.matmul(seq_pool_attn.transpose(-1, -2), hidden_state_pre_pool).squeeze(-2)
        seq_pool_attn = seq_pool_attn.squeeze()

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_state_post_pool,)

        if not return_dict:
            if output_hidden_states:
                return (hidden_state_pre_pool, hidden_state_post_pool, all_hidden_states)
            else:
                return (hidden_state_pre_pool, hidden_state_post_pool)

        return BaseModelOutputWithSeqPool(
            last_hidden_state=hidden_state_pre_pool,
            hidden_state_post_pool=hidden_state_post_pool,
            hidden_states=all_hidden_states if output_hidden_states else None,
        )

    @staticmethod
    def learnable_embedding(sequence_length, embed_dim):
        pe = torch.zeros(1, sequence_length, embed_dim)
        return nn.init.trunc_normal_(pe, std=0.2)

    @staticmethod
    def sinusoidal_embedding(sequence_length, embed_dim):
        pe = torch.FloatTensor(
            [[p / (10000 ** (2 * (i // 2) / embed_dim)) for i in range(embed_dim)] for p in range(sequence_length)]
        )
        pe[:, 0::2] = torch.sin(pe[:, 0::2])
        pe[:, 1::2] = torch.cos(pe[:, 1::2])
        return pe.unsqueeze(0)


class CctPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = CctConfig
    base_model_prefix = "cct"
    main_input_name = "pixel_values"

    def _init_weights(self, module):
        if isinstance(module, nn.ModuleList):
            for module_child in module:
                self._init_weights(module_child)
        elif isinstance(module, nn.Module) and len(list(module.children())) > 0:
            for module_child in module.children():
                self._init_weights(module_child)
        elif isinstance(module, nn.Linear):
            nn.init.trunc_normal_(module.weight, std=0.02)
            if module.bias is not None:
                nn.init.constant_(module.bias, 0.0)
        elif isinstance(module, nn.LayerNorm):
            nn.init.constant_(module.bias, 0.0)
            nn.init.constant_(module.weight, 1.0)
        elif isinstance(module, nn.Conv2d):
            nn.init.kaiming_normal_(module.weight)


class CctModel(CctPreTrainedModel):
    def __init__(self, config, add_pooling_layer=True):
        super().__init__(config)
        self.config = config
        self.embedder = CctConvEmbeddings(config)
        self.encoder = CctEncoder(config, self.embedder.get_sequence_length())
        self.post_init()

    def forward(
        self,
        pixel_values: torch.Tensor,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithSeqPool]:
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if pixel_values is None:
            raise ValueError("You have to specify pixel_values (input image)")

        embedder_outputs = self.embedder(pixel_values)
        encoder_outputs = self.encoder(
            embedder_outputs,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        return encoder_outputs

class CctForImageClassification(CctPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.num_labels = config.num_labels
        self.cct = CctModel(config, add_pooling_layer=False)
        # Classifier head
        self.classifier = nn.Linear(config.embed_dim, config.num_labels) if config.num_labels > 0 else nn.Identity()

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        pixel_values: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )

        outputs = self.cct(
            pixel_values,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        pooled_output = outputs.hidden_state_post_pool if return_dict else outputs[1]
        logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.config.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.config.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            out = (logits, outputs[2]) if output_hidden_states else (logits,)
            return (loss,) + out if loss is not None else out

        return ImageClassifierOutputWithNoAttention(
            loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None
        )