File size: 17,748 Bytes
ca61f1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
# coding=utf-8
# Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch CCT model."""
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.modeling_outputs import ImageClassifierOutputWithNoAttention, ModelOutput
from transformers import PreTrainedModel
from .configuration_cct import CctConfig
# General docstring
_CONFIG_FOR_DOC = "CctConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "rishabbala/cct_14_7x2_384"
_EXPECTED_OUTPUT_SHAPE = [1, 384]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "rishabbala/cct_14_7x2_384"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
CCT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"rishabbala/cct_14_7x2_384",
"rishabbala/cct_14_7x2_224"
# See all CCT models at https://huggingface.co/models?filter=cct
]
@dataclass
class BaseModelOutputWithSeqPool(ModelOutput):
"""
Base class for model's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model prior to sequential pooling.
hidden_state_post_pool (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model post sequential pooling.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
"""
last_hidden_state: torch.FloatTensor = None
hidden_state_post_pool: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input, drop_prob: float = 0.0, training: bool = False):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath
class CctDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class CctConvEmbeddings(nn.Module):
"""
Performs convolutional tokenization of the input image.
"""
def __init__(self, config: CctConfig):
super().__init__()
self.in_channels = config.in_channels
self.img_size = config.img_size
channels_size = [config.in_channels] + config.out_channels
assert (
len(channels_size) == config.num_conv_layers + 1
), "Ensure that the number output channels matches the number of conv layers"
self.embedding_layers = nn.ModuleList([])
for i in range(config.num_conv_layers):
self.embedding_layers.extend(
[
nn.Conv2d(
channels_size[i],
channels_size[i + 1],
kernel_size=config.conv_kernel_size,
stride=config.conv_stride,
padding=config.conv_padding,
bias=config.conv_bias,
),
nn.ReLU(),
nn.MaxPool2d(config.pool_kernel_size, stride=config.pool_stride, padding=config.pool_padding),
]
)
def forward(self, pixel_values):
for layer in self.embedding_layers:
pixel_values = layer(pixel_values)
batch_size, num_channels, height, width = pixel_values.shape
hidden_size = height * width
# rearrange "b c h w -> b (h w) c"
pixel_values = pixel_values.view(batch_size, num_channels, hidden_size).permute(0, 2, 1)
return pixel_values
def get_sequence_length(self) -> int:
return self.forward(torch.zeros((1, self.in_channels, self.img_size, self.img_size))).shape[1]
class CctSelfAttention(nn.Module):
"""
Attention Module that computes self-attention, given an input hidden_state. Q, K, V are computed implicitly from
hidden_state
"""
def __init__(self, embed_dim, num_heads=6, attention_drop_rate=0.1, drop_rate=0.0):
super().__init__()
self.num_heads = num_heads
head_dim = embed_dim // self.num_heads
self.scale = head_dim**-0.5
self.qkv = nn.Linear(embed_dim, embed_dim * 3, bias=False)
self.attn_drop = nn.Dropout(attention_drop_rate)
self.proj = nn.Linear(embed_dim, embed_dim)
self.proj_drop = nn.Dropout(drop_rate)
def forward(self, hidden_state):
B, N, C = hidden_state.shape
qkv = self.qkv(hidden_state).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
hidden_state = (attn @ v).transpose(1, 2).reshape(B, N, C)
hidden_state = self.proj(hidden_state)
hidden_state = self.proj_drop(hidden_state)
return hidden_state
class CctStage(nn.Module):
"""
CCT stage composed of stacked transformer layers
"""
def __init__(
self, embed_dim=384, num_heads=6, mlp_ratio=3, drop_rate=0.0, attention_drop_rate=0.1, drop_path_rate=0.0
):
super().__init__()
dim_feedforward = mlp_ratio * embed_dim
self.pre_norm = nn.LayerNorm(embed_dim)
self.linear1 = nn.Linear(embed_dim, dim_feedforward)
self.norm1 = nn.LayerNorm(embed_dim)
self.linear2 = nn.Linear(dim_feedforward, embed_dim)
self.self_attn = CctSelfAttention(
embed_dim=embed_dim, num_heads=num_heads, attention_drop_rate=attention_drop_rate, drop_rate=drop_rate
)
self.dropout1 = nn.Dropout(drop_rate)
self.dropout2 = nn.Dropout(drop_rate)
self.drop_path = CctDropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
self.activation = F.gelu
def forward(self, hidden_state):
hidden_state = hidden_state + self.drop_path(self.self_attn(self.pre_norm(hidden_state)))
hidden_state = self.norm1(hidden_state)
hidden_state = hidden_state + self.drop_path(
self.dropout2(self.linear2(self.dropout1(self.activation(self.linear1(hidden_state)))))
)
return hidden_state
class CctEncoder(nn.Module):
"""
Class that combines CctConvEmbeddings and CctStage. Output is of type BaseModelOutputWithSeqPool if return_dict is
set to True, else the output is a Tuple
"""
def __init__(self, config: CctConfig, sequence_length: int):
super().__init__()
assert sequence_length is not None, "Sequence Length required to initialize positional embedding"
int(config.embed_dim * config.mlp_ratio)
self.attention_pool = nn.Linear(config.embed_dim, 1)
if config.pos_emb_type == "learnable":
self.positional_emb = nn.Parameter(
self.learnable_embedding(sequence_length, config.embed_dim), requires_grad=True
)
else:
self.positional_emb = nn.Parameter(
self.sinusoidal_embedding(sequence_length, config.embed_dim), requires_grad=False
)
self.dropout = nn.Dropout(config.drop_rate)
stochastic_dropout_rate = [
x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_transformer_layers)
]
self.blocks = nn.ModuleList(
[
CctStage(
config.embed_dim,
config.num_heads,
config.mlp_ratio,
config.drop_rate,
config.attention_drop_rate,
stochastic_dropout_rate[i],
)
for i in range(config.num_transformer_layers)
]
)
self.norm = nn.LayerNorm(config.embed_dim)
def forward(self, pixel_values, output_hidden_states=False, return_dict=True) -> BaseModelOutputWithSeqPool:
all_hidden_states = ()
hidden_state = pixel_values + self.positional_emb
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_state,)
hidden_state = self.dropout(hidden_state)
for blk in self.blocks:
hidden_state = blk(hidden_state)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_state,)
hidden_state_pre_pool = self.norm(hidden_state)
if output_hidden_states:
all_hidden_states = all_hidden_states[:-1] + (hidden_state_pre_pool,)
seq_pool_attn = F.softmax(self.attention_pool(hidden_state_pre_pool), dim=1)
hidden_state_post_pool = torch.matmul(seq_pool_attn.transpose(-1, -2), hidden_state_pre_pool).squeeze(-2)
seq_pool_attn = seq_pool_attn.squeeze()
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_state_post_pool,)
if not return_dict:
if output_hidden_states:
return (hidden_state_pre_pool, hidden_state_post_pool, all_hidden_states)
else:
return (hidden_state_pre_pool, hidden_state_post_pool)
return BaseModelOutputWithSeqPool(
last_hidden_state=hidden_state_pre_pool,
hidden_state_post_pool=hidden_state_post_pool,
hidden_states=all_hidden_states if output_hidden_states else None,
)
@staticmethod
def learnable_embedding(sequence_length, embed_dim):
pe = torch.zeros(1, sequence_length, embed_dim)
return nn.init.trunc_normal_(pe, std=0.2)
@staticmethod
def sinusoidal_embedding(sequence_length, embed_dim):
pe = torch.FloatTensor(
[[p / (10000 ** (2 * (i // 2) / embed_dim)) for i in range(embed_dim)] for p in range(sequence_length)]
)
pe[:, 0::2] = torch.sin(pe[:, 0::2])
pe[:, 1::2] = torch.cos(pe[:, 1::2])
return pe.unsqueeze(0)
class CctPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = CctConfig
base_model_prefix = "cct"
main_input_name = "pixel_values"
def _init_weights(self, module):
if isinstance(module, nn.ModuleList):
for module_child in module:
self._init_weights(module_child)
elif isinstance(module, nn.Module) and len(list(module.children())) > 0:
for module_child in module.children():
self._init_weights(module_child)
elif isinstance(module, nn.Linear):
nn.init.trunc_normal_(module.weight, std=0.02)
if module.bias is not None:
nn.init.constant_(module.bias, 0.0)
elif isinstance(module, nn.LayerNorm):
nn.init.constant_(module.bias, 0.0)
nn.init.constant_(module.weight, 1.0)
elif isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight)
class CctModel(CctPreTrainedModel):
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embedder = CctConvEmbeddings(config)
self.encoder = CctEncoder(config, self.embedder.get_sequence_length())
self.post_init()
def forward(
self,
pixel_values: torch.Tensor,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithSeqPool]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values (input image)")
embedder_outputs = self.embedder(pixel_values)
encoder_outputs = self.encoder(
embedder_outputs,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return encoder_outputs
class CctForImageClassification(CctPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.cct = CctModel(config, add_pooling_layer=False)
# Classifier head
self.classifier = nn.Linear(config.embed_dim, config.num_labels) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
outputs = self.cct(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs.hidden_state_post_pool if return_dict else outputs[1]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.config.num_labels == 1:
self.config.problem_type = "regression"
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.config.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
out = (logits, outputs[2]) if output_hidden_states else (logits,)
return (loss,) + out if loss is not None else out
return ImageClassifierOutputWithNoAttention(
loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None
)
|