File size: 9,347 Bytes
77493fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c94a61
 
 
 
 
 
 
 
77493fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c94a61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77493fd
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
tags:
- generated_from_trainer
datasets:
- funsd
model-index:
- name: layoutlm-funsd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlm-funsd

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6843
- Answer: {'precision': 0.6938997821350763, 'recall': 0.7873918417799752, 'f1': 0.7376954255935148, 'number': 809}
- Header: {'precision': 0.27941176470588236, 'recall': 0.31932773109243695, 'f1': 0.2980392156862745, 'number': 119}
- Question: {'precision': 0.7749562171628721, 'recall': 0.8309859154929577, 'f1': 0.8019936565473492, 'number': 1065}
- Overall Precision: 0.7104
- Overall Recall: 0.7827
- Overall F1: 0.7448
- Overall Accuracy: 0.8076

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Answer                                                                                                         | Header                                                                                                      | Question                                                                                                      | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.8035        | 1.0   | 10   | 1.6086          | {'precision': 0.007142857142857143, 'recall': 0.003708281829419036, 'f1': 0.004882017900732303, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.07957559681697612, 'recall': 0.028169014084507043, 'f1': 0.04160887656033287, 'number': 1065} | 0.0414            | 0.0166         | 0.0237     | 0.3175           |
| 1.4936        | 2.0   | 20   | 1.2735          | {'precision': 0.279126213592233, 'recall': 0.4264524103831891, 'f1': 0.3374083129584352, 'number': 809}        | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.4406651549508692, 'recall': 0.5474178403755868, 'f1': 0.48827470686767166, 'number': 1065}    | 0.3626            | 0.4656         | 0.4077     | 0.6074           |
| 1.1259        | 3.0   | 30   | 0.9718          | {'precision': 0.47892074198988194, 'recall': 0.7021013597033374, 'f1': 0.569423558897243, 'number': 809}       | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.5904121110176619, 'recall': 0.6591549295774648, 'f1': 0.6228926353149955, 'number': 1065}     | 0.5336            | 0.6372         | 0.5808     | 0.6760           |
| 0.8568        | 4.0   | 40   | 0.8421          | {'precision': 0.5595126522961574, 'recall': 0.7379480840543882, 'f1': 0.6364605543710021, 'number': 809}       | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.6669595782073814, 'recall': 0.7126760563380282, 'f1': 0.6890603722197005, 'number': 1065}     | 0.6059            | 0.6804         | 0.6410     | 0.7310           |
| 0.7275        | 5.0   | 50   | 0.7430          | {'precision': 0.6401673640167364, 'recall': 0.7564894932014833, 'f1': 0.693484419263456, 'number': 809}        | {'precision': 0.12643678160919541, 'recall': 0.09243697478991597, 'f1': 0.10679611650485439, 'number': 119} | {'precision': 0.6825, 'recall': 0.7690140845070422, 'f1': 0.7231788079470199, 'number': 1065}                 | 0.6429            | 0.7235         | 0.6808     | 0.7727           |
| 0.6109        | 6.0   | 60   | 0.6965          | {'precision': 0.6494736842105263, 'recall': 0.7626699629171817, 'f1': 0.7015349630471859, 'number': 809}       | {'precision': 0.125, 'recall': 0.09243697478991597, 'f1': 0.10628019323671498, 'number': 119}               | {'precision': 0.6780415430267063, 'recall': 0.8582159624413146, 'f1': 0.7575631993369251, 'number': 1065}     | 0.6463            | 0.7737         | 0.7043     | 0.7862           |
| 0.5341        | 7.0   | 70   | 0.6816          | {'precision': 0.6745945945945946, 'recall': 0.7713226205191595, 'f1': 0.7197231833910035, 'number': 809}       | {'precision': 0.22727272727272727, 'recall': 0.21008403361344538, 'f1': 0.21834061135371177, 'number': 119} | {'precision': 0.7435037720033529, 'recall': 0.8328638497652582, 'f1': 0.7856510186005314, 'number': 1065}     | 0.6894            | 0.7707         | 0.7278     | 0.7920           |
| 0.4811        | 8.0   | 80   | 0.6577          | {'precision': 0.6800870511425462, 'recall': 0.7725587144622992, 'f1': 0.7233796296296297, 'number': 809}       | {'precision': 0.2072072072072072, 'recall': 0.19327731092436976, 'f1': 0.2, 'number': 119}                  | {'precision': 0.7440132122213047, 'recall': 0.8460093896713615, 'f1': 0.7917398945518453, 'number': 1065}     | 0.6912            | 0.7772         | 0.7317     | 0.7986           |
| 0.4241        | 9.0   | 90   | 0.6586          | {'precision': 0.6898454746136865, 'recall': 0.7725587144622992, 'f1': 0.7288629737609328, 'number': 809}       | {'precision': 0.2535211267605634, 'recall': 0.3025210084033613, 'f1': 0.2758620689655173, 'number': 119}    | {'precision': 0.751269035532995, 'recall': 0.8338028169014085, 'f1': 0.7903871829105474, 'number': 1065}      | 0.6946            | 0.7772         | 0.7336     | 0.7991           |
| 0.3784        | 10.0  | 100  | 0.6511          | {'precision': 0.6879739978331527, 'recall': 0.7849196538936959, 'f1': 0.7332563510392609, 'number': 809}       | {'precision': 0.2833333333333333, 'recall': 0.2857142857142857, 'f1': 0.2845188284518828, 'number': 119}    | {'precision': 0.7590870667793744, 'recall': 0.8431924882629108, 'f1': 0.7989323843416369, 'number': 1065}     | 0.7040            | 0.7863         | 0.7428     | 0.8046           |
| 0.3425        | 11.0  | 110  | 0.6611          | {'precision': 0.6975982532751092, 'recall': 0.7898640296662547, 'f1': 0.7408695652173912, 'number': 809}       | {'precision': 0.26865671641791045, 'recall': 0.3025210084033613, 'f1': 0.2845849802371542, 'number': 119}   | {'precision': 0.7737162750217581, 'recall': 0.8347417840375587, 'f1': 0.803071364046974, 'number': 1065}      | 0.7112            | 0.7847         | 0.7462     | 0.8116           |
| 0.3225        | 12.0  | 120  | 0.6676          | {'precision': 0.6957470010905126, 'recall': 0.788627935723115, 'f1': 0.7392815758980301, 'number': 809}        | {'precision': 0.27941176470588236, 'recall': 0.31932773109243695, 'f1': 0.2980392156862745, 'number': 119}  | {'precision': 0.7806167400881058, 'recall': 0.831924882629108, 'f1': 0.8054545454545454, 'number': 1065}      | 0.7139            | 0.7837         | 0.7472     | 0.8081           |
| 0.302         | 13.0  | 130  | 0.6698          | {'precision': 0.6956043956043956, 'recall': 0.7824474660074165, 'f1': 0.7364746945898778, 'number': 809}       | {'precision': 0.2878787878787879, 'recall': 0.31932773109243695, 'f1': 0.302788844621514, 'number': 119}    | {'precision': 0.7730434782608696, 'recall': 0.8347417840375587, 'f1': 0.8027088036117382, 'number': 1065}     | 0.7117            | 0.7827         | 0.7455     | 0.8133           |
| 0.2915        | 14.0  | 140  | 0.6845          | {'precision': 0.6978260869565217, 'recall': 0.7935723114956736, 'f1': 0.742625795257374, 'number': 809}        | {'precision': 0.2857142857142857, 'recall': 0.31932773109243695, 'f1': 0.30158730158730157, 'number': 119}  | {'precision': 0.7771929824561403, 'recall': 0.831924882629108, 'f1': 0.8036281179138323, 'number': 1065}      | 0.7141            | 0.7858         | 0.7482     | 0.8052           |
| 0.2872        | 15.0  | 150  | 0.6843          | {'precision': 0.6938997821350763, 'recall': 0.7873918417799752, 'f1': 0.7376954255935148, 'number': 809}       | {'precision': 0.27941176470588236, 'recall': 0.31932773109243695, 'f1': 0.2980392156862745, 'number': 119}  | {'precision': 0.7749562171628721, 'recall': 0.8309859154929577, 'f1': 0.8019936565473492, 'number': 1065}     | 0.7104            | 0.7827         | 0.7448     | 0.8076           |


### Framework versions

- Transformers 4.22.2
- Pytorch 1.12.1+cu113
- Datasets 2.5.2
- Tokenizers 0.12.1