File size: 11,041 Bytes
dd2bdcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
# coding=utf-8
# Copyright 2022-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Check presence of installed packages at runtime."""
import importlib.metadata
import platform
import sys
import warnings
from typing import Any, Dict
from .. import __version__, constants
_PY_VERSION: str = sys.version.split()[0].rstrip("+")
_package_versions = {}
_CANDIDATES = {
"aiohttp": {"aiohttp"},
"fastai": {"fastai"},
"fastapi": {"fastapi"},
"fastcore": {"fastcore"},
"gradio": {"gradio"},
"graphviz": {"graphviz"},
"hf_transfer": {"hf_transfer"},
"jinja": {"Jinja2"},
"keras": {"keras"},
"minijinja": {"minijinja"},
"numpy": {"numpy"},
"pillow": {"Pillow"},
"pydantic": {"pydantic"},
"pydot": {"pydot"},
"safetensors": {"safetensors"},
"tensorboard": {"tensorboardX"},
"tensorflow": (
"tensorflow",
"tensorflow-cpu",
"tensorflow-gpu",
"tf-nightly",
"tf-nightly-cpu",
"tf-nightly-gpu",
"intel-tensorflow",
"intel-tensorflow-avx512",
"tensorflow-rocm",
"tensorflow-macos",
),
"torch": {"torch"},
}
# Check once at runtime
for candidate_name, package_names in _CANDIDATES.items():
_package_versions[candidate_name] = "N/A"
for name in package_names:
try:
_package_versions[candidate_name] = importlib.metadata.version(name)
break
except importlib.metadata.PackageNotFoundError:
pass
def _get_version(package_name: str) -> str:
return _package_versions.get(package_name, "N/A")
def is_package_available(package_name: str) -> bool:
return _get_version(package_name) != "N/A"
# Python
def get_python_version() -> str:
return _PY_VERSION
# Huggingface Hub
def get_hf_hub_version() -> str:
return __version__
# aiohttp
def is_aiohttp_available() -> bool:
return is_package_available("aiohttp")
def get_aiohttp_version() -> str:
return _get_version("aiohttp")
# FastAI
def is_fastai_available() -> bool:
return is_package_available("fastai")
def get_fastai_version() -> str:
return _get_version("fastai")
# FastAPI
def is_fastapi_available() -> bool:
return is_package_available("fastapi")
def get_fastapi_version() -> str:
return _get_version("fastapi")
# Fastcore
def is_fastcore_available() -> bool:
return is_package_available("fastcore")
def get_fastcore_version() -> str:
return _get_version("fastcore")
# FastAI
def is_gradio_available() -> bool:
return is_package_available("gradio")
def get_gradio_version() -> str:
return _get_version("gradio")
# Graphviz
def is_graphviz_available() -> bool:
return is_package_available("graphviz")
def get_graphviz_version() -> str:
return _get_version("graphviz")
# hf_transfer
def is_hf_transfer_available() -> bool:
return is_package_available("hf_transfer")
def get_hf_transfer_version() -> str:
return _get_version("hf_transfer")
# keras
def is_keras_available() -> bool:
return is_package_available("keras")
def get_keras_version() -> str:
return _get_version("keras")
# Minijinja
def is_minijinja_available() -> bool:
return is_package_available("minijinja")
def get_minijinja_version() -> str:
return _get_version("minijinja")
# Numpy
def is_numpy_available() -> bool:
return is_package_available("numpy")
def get_numpy_version() -> str:
return _get_version("numpy")
# Jinja
def is_jinja_available() -> bool:
return is_package_available("jinja")
def get_jinja_version() -> str:
return _get_version("jinja")
# Pillow
def is_pillow_available() -> bool:
return is_package_available("pillow")
def get_pillow_version() -> str:
return _get_version("pillow")
# Pydantic
def is_pydantic_available() -> bool:
if not is_package_available("pydantic"):
return False
# For Pydantic, we add an extra check to test whether it is correctly installed or not. If both pydantic 2.x and
# typing_extensions<=4.5.0 are installed, then pydantic will fail at import time. This should not happen when
# it is installed with `pip install huggingface_hub[inference]` but it can happen when it is installed manually
# by the user in an environment that we don't control.
#
# Usually we won't need to do this kind of check on optional dependencies. However, pydantic is a special case
# as it is automatically imported when doing `from huggingface_hub import ...` even if the user doesn't use it.
#
# See https://github.com/huggingface/huggingface_hub/pull/1829 for more details.
try:
from pydantic import validator # noqa: F401
except ImportError:
# Example: "ImportError: cannot import name 'TypeAliasType' from 'typing_extensions'"
warnings.warn(
"Pydantic is installed but cannot be imported. Please check your installation. `huggingface_hub` will "
"default to not using Pydantic. Error message: '{e}'"
)
return False
return True
def get_pydantic_version() -> str:
return _get_version("pydantic")
# Pydot
def is_pydot_available() -> bool:
return is_package_available("pydot")
def get_pydot_version() -> str:
return _get_version("pydot")
# Tensorboard
def is_tensorboard_available() -> bool:
return is_package_available("tensorboard")
def get_tensorboard_version() -> str:
return _get_version("tensorboard")
# Tensorflow
def is_tf_available() -> bool:
return is_package_available("tensorflow")
def get_tf_version() -> str:
return _get_version("tensorflow")
# Torch
def is_torch_available() -> bool:
return is_package_available("torch")
def get_torch_version() -> str:
return _get_version("torch")
# Safetensors
def is_safetensors_available() -> bool:
return is_package_available("safetensors")
# Shell-related helpers
try:
# Set to `True` if script is running in a Google Colab notebook.
# If running in Google Colab, git credential store is set globally which makes the
# warning disappear. See https://github.com/huggingface/huggingface_hub/issues/1043
#
# Taken from https://stackoverflow.com/a/63519730.
_is_google_colab = "google.colab" in str(get_ipython()) # type: ignore # noqa: F821
except NameError:
_is_google_colab = False
def is_notebook() -> bool:
"""Return `True` if code is executed in a notebook (Jupyter, Colab, QTconsole).
Taken from https://stackoverflow.com/a/39662359.
Adapted to make it work with Google colab as well.
"""
try:
shell_class = get_ipython().__class__ # type: ignore # noqa: F821
for parent_class in shell_class.__mro__: # e.g. "is subclass of"
if parent_class.__name__ == "ZMQInteractiveShell":
return True # Jupyter notebook, Google colab or qtconsole
return False
except NameError:
return False # Probably standard Python interpreter
def is_google_colab() -> bool:
"""Return `True` if code is executed in a Google colab.
Taken from https://stackoverflow.com/a/63519730.
"""
return _is_google_colab
def dump_environment_info() -> Dict[str, Any]:
"""Dump information about the machine to help debugging issues.
Similar helper exist in:
- `datasets` (https://github.com/huggingface/datasets/blob/main/src/datasets/commands/env.py)
- `diffusers` (https://github.com/huggingface/diffusers/blob/main/src/diffusers/commands/env.py)
- `transformers` (https://github.com/huggingface/transformers/blob/main/src/transformers/commands/env.py)
"""
from huggingface_hub import get_token, whoami
from huggingface_hub.utils import list_credential_helpers
token = get_token()
# Generic machine info
info: Dict[str, Any] = {
"huggingface_hub version": get_hf_hub_version(),
"Platform": platform.platform(),
"Python version": get_python_version(),
}
# Interpreter info
try:
shell_class = get_ipython().__class__ # type: ignore # noqa: F821
info["Running in iPython ?"] = "Yes"
info["iPython shell"] = shell_class.__name__
except NameError:
info["Running in iPython ?"] = "No"
info["Running in notebook ?"] = "Yes" if is_notebook() else "No"
info["Running in Google Colab ?"] = "Yes" if is_google_colab() else "No"
# Login info
info["Token path ?"] = constants.HF_TOKEN_PATH
info["Has saved token ?"] = token is not None
if token is not None:
try:
info["Who am I ?"] = whoami()["name"]
except Exception:
pass
try:
info["Configured git credential helpers"] = ", ".join(list_credential_helpers())
except Exception:
pass
# Installed dependencies
info["FastAI"] = get_fastai_version()
info["Tensorflow"] = get_tf_version()
info["Torch"] = get_torch_version()
info["Jinja2"] = get_jinja_version()
info["Graphviz"] = get_graphviz_version()
info["keras"] = get_keras_version()
info["Pydot"] = get_pydot_version()
info["Pillow"] = get_pillow_version()
info["hf_transfer"] = get_hf_transfer_version()
info["gradio"] = get_gradio_version()
info["tensorboard"] = get_tensorboard_version()
info["numpy"] = get_numpy_version()
info["pydantic"] = get_pydantic_version()
info["aiohttp"] = get_aiohttp_version()
# Environment variables
info["ENDPOINT"] = constants.ENDPOINT
info["HF_HUB_CACHE"] = constants.HF_HUB_CACHE
info["HF_ASSETS_CACHE"] = constants.HF_ASSETS_CACHE
info["HF_TOKEN_PATH"] = constants.HF_TOKEN_PATH
info["HF_HUB_OFFLINE"] = constants.HF_HUB_OFFLINE
info["HF_HUB_DISABLE_TELEMETRY"] = constants.HF_HUB_DISABLE_TELEMETRY
info["HF_HUB_DISABLE_PROGRESS_BARS"] = constants.HF_HUB_DISABLE_PROGRESS_BARS
info["HF_HUB_DISABLE_SYMLINKS_WARNING"] = constants.HF_HUB_DISABLE_SYMLINKS_WARNING
info["HF_HUB_DISABLE_EXPERIMENTAL_WARNING"] = constants.HF_HUB_DISABLE_EXPERIMENTAL_WARNING
info["HF_HUB_DISABLE_IMPLICIT_TOKEN"] = constants.HF_HUB_DISABLE_IMPLICIT_TOKEN
info["HF_HUB_ENABLE_HF_TRANSFER"] = constants.HF_HUB_ENABLE_HF_TRANSFER
info["HF_HUB_ETAG_TIMEOUT"] = constants.HF_HUB_ETAG_TIMEOUT
info["HF_HUB_DOWNLOAD_TIMEOUT"] = constants.HF_HUB_DOWNLOAD_TIMEOUT
print("\nCopy-and-paste the text below in your GitHub issue.\n")
print("\n".join([f"- {prop}: {val}" for prop, val in info.items()]) + "\n")
return info
|