rianrajagede
commited on
Commit
·
3b80399
1
Parent(s):
b47b751
5M timesteps 12hoe40n
Browse files- 12hoe40n.zip +3 -0
- 12hoe40n/_stable_baselines3_version +1 -0
- 12hoe40n/data +94 -0
- 12hoe40n/policy.optimizer.pth +3 -0
- 12hoe40n/policy.pth +3 -0
- 12hoe40n/pytorch_variables.pth +3 -0
- 12hoe40n/system_info.txt +7 -0
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
12hoe40n.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1aac8e36ab5737df42ae44a6f370b0ed4253e7834df40e7634dd6a51ee75a55
|
3 |
+
size 145077
|
12hoe40n/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
12hoe40n/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa8c5b855e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa8c5b85670>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa8c5b85700>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa8c5b85790>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa8c5b85820>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa8c5b858b0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa8c5b85940>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa8c5b859d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa8c5b85a60>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa8c5b85af0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa8c5b85b80>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fa8c5b82510>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 40,
|
45 |
+
"num_timesteps": 5079040,
|
46 |
+
"_total_timesteps": 5000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652181902.4447286,
|
51 |
+
"learning_rate": 0.0001,
|
52 |
+
"tensorboard_log": "runs/12hoe40n",
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQUAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABQAAAAAAAJpECL09VC27aVWbPTROV755gD49mWA4vwAAAAAAAIA/mgVePazPlj8ap5M+LsUpvwsTzD2krMk9AAAAAAAAAACzChS+b22KP9Uncr5RYhC/Z/ebvjiSX70AAAAAAAAAALZ7kD6U/1Q/TyoRPt7CC7+I6RM/OpMgPgAAAAAAAAAAZpmQPfZzKz9Y+Tu7hqEWv+PclD3lNw89AAAAAAAAAAAAZnq91kKdP8ohLL50QBe/ltEEvt3lm70AAAAAAAAAAMAwo710GYA+mh+9Pstz375Nx4k9zphpPgAAAAAAAAAAmmoDvRTonbq+7um2VQvbsUT7jLqq6AY2AACAPwAAgD8Nfo6947WkPxm2Jr9L5iu/aSMGvLxvRL4AAAAAAAAAABp6Fb5/jL0+ZkKpPr0TAr/eo3y9ZVAsPgAAAAAAAAAAGlsavWVXWz9L02m8D1kBvwvCp71K5G07AAAAAAAAAACzyXI9rl2VuohOIDiRmRQzTaepOsyHObcAAIA/AACAP2YuQzxcE3S6EOFguryBFrTBUmS6IeKBOQAAgD8AAIA/2nh4Pk7eNT+oxCC94YUEvwoZlj7waBC+AAAAAAAAAABNpSW9wyFoujCdDLRxnUaw53c8OhU2pTMAAIA/AACAP7NpHr6X63s/OuKmvuceCr/3U6i+emE7vgAAAAAAAAAAzQbBvJL2oT94XdG9BzMWvxQnib33AjK+AAAAAAAAAABmgN887N3Mu9PWir2RPDg8I/UrPYMpH70AAIA/AACAP0DlhD2ELS4/4W+hPQWaEL9MIPU9vNgCPQAAAAAAAAAA05EiPrdtCz/uk/+8H/n0vjK/jD6NA5i9AAAAAAAAAAAAxM47XGuUP0g7njyUkSu/OF2TvCpEZz0AAAAAAAAAAGboAzyPyWq8G/tvvQRSh7zrz7s9XhJQPgAAgD8AAIA/3RCAPlvnaT+La9A8ZaMLv7gpqT5XDBC9AAAAAAAAAAAtf4s+cLiKP6Y0xD613BG/TjrdPiAQgj0AAAAAAAAAALOAVD1sUoI/zK4UPqejIL8W0ro9AAd8PQAAAAAAAAAAHVGDPhd5jD+CrP4+MQURv6Aw0T5EYAE+AAAAAAAAAAAza7087N26u/4OUL1gvxA7dVAnPZtCHLwAAIA/AACAP5r5aLuPNl66of4cN+vzn7HiGGG7Xkc0tgAAgD8AAIA/mgWtPBTkpLpRfRO8+SCLPJA68zvWf3G9AACAPwAAgD/NXNM6e+yGurT1PTyjFKg8CKMlu7CwkD0AAIA/AACAPw0Kyr3nMxE/rmAsPpZHCb9xoOS9FkOQPQAAAAAAAAAAzbauPBtA7j3oqaI9op/RvmBYBD4E2509AAAAAAAAAAAAQKM8BUKVu2o40Dxdcis7g1X6vB6VNTwAAIA/AACAPybTo73uLsI+OkXyPdBvAL9rK4G9PirVPQAAAAAAAAAAAHuNPCmoVrrY6OazGRZDLic1OroLbKQzAACAPwAAgD86hyE+YVwJP+fjrb18duC+7To3Pktrvr0AAAAAAAAAAPMkg74c7oM/nPSOvi0iCr8XlPC+6Bi2uwAAAAAAAAAAQNMhvjJviT5e1/M+QWrjvhJ8/Lyb8kk+AAAAAAAAAACzI6e9iI+yP4ML3b4BeIK+RcOcvayjh74AAAAAAAAAAGY3uj0Gx5o/7PSYPt6CLr8uWAA+6goCPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksoSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVmwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSyiFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXVK13QSkckCUhpRSlIwBbJRLyYwBdJRHQLNqJ83uNPx1fZQoaAZoCWgPQwghlPdxNK5zQJSGlFKUaBVLymgWR0CzajRTXJ5ndX2UKGgGaAloD0MI2AxwQXZdcECUhpRSlGgVS81oFkdAs2oyzVtoBnV9lChoBmgJaA9DCKyt2F922HFAlIaUUpRoFUuzaBZHQLNqOBF/hEV1fZQoaAZoCWgPQwjAX8yW7DBxQJSGlFKUaBVL1GgWR0CzajXXRPXTdX2UKGgGaAloD0MIev8fJ8xvc0CUhpRSlGgVS7ZoFkdAs2pUGnn+ynV9lChoBmgJaA9DCDP9EvFWJ3JAlIaUUpRoFUvJaBZHQLNqV+otL+R1fZQoaAZoCWgPQwj8xWzJKmlxQJSGlFKUaBVLzmgWR0Czamsan753dX2UKGgGaAloD0MIkUQvo9jecUCUhpRSlGgVS+1oFkdAs2p4n4O+ZnV9lChoBmgJaA9DCDT1ukUgYnJAlIaUUpRoFUveaBZHQLNqfkUbkwN1fZQoaAZoCWgPQwhBfjZynQ9yQJSGlFKUaBVL3WgWR0Czan/pIMBqdX2UKGgGaAloD0MI26Z4XBSucUCUhpRSlGgVS81oFkdAs2qJXr+o+HV9lChoBmgJaA9DCB0gmKNH9HFAlIaUUpRoFUu0aBZHQLNqkASFoL51fZQoaAZoCWgPQwhM4xdeSalxQJSGlFKUaBVLzmgWR0CzapcuJ1q4dX2UKGgGaAloD0MITny1o7g7ckCUhpRSlGgVS9hoFkdAs2q5xLkCFXV9lChoBmgJaA9DCGcpWU5CJHJAlIaUUpRoFUvKaBZHQLNqveCTUy51fZQoaAZoCWgPQwjxEMZPo71yQJSGlFKUaBVL0WgWR0Czas/Sx7iRdX2UKGgGaAloD0MIFCaMZqURc0CUhpRSlGgVS99oFkdAs2rVAbADaHV9lChoBmgJaA9DCDhOCvNeuHJAlIaUUpRoFUvOaBZHQLNq7GOuJUJ1fZQoaAZoCWgPQwjbEyS2u9VwQJSGlFKUaBVL1mgWR0CzawZoXbdrdX2UKGgGaAloD0MIylNW0/VKUUCUhpRSlGgVS4loFkdAs2sLv+fh/HV9lChoBmgJaA9DCJfkgF3NhHFAlIaUUpRoFUuyaBZHQLNrGFa0Qbx1fZQoaAZoCWgPQwjlC1pIwIZyQJSGlFKUaBVL12gWR0Czaxs9r434dX2UKGgGaAloD0MITrSrkPJcckCUhpRSlGgVS8poFkdAs2s+xqwhXHV9lChoBmgJaA9DCCqr6Xoib3FAlIaUUpRoFUvUaBZHQLNrU38XN1R1fZQoaAZoCWgPQwhEUgslk7ZxQJSGlFKUaBVLw2gWR0Cza2WxhUiqdX2UKGgGaAloD0MIQZyHExhrc0CUhpRSlGgVS7toFkdAs2tlnscABHV9lChoBmgJaA9DCAaFQZlG6G9AlIaUUpRoFUvSaBZHQLNrc5LRKHx1fZQoaAZoCWgPQwi4yhMIu5dvQJSGlFKUaBVLwmgWR0Cza4ik9ECvdX2UKGgGaAloD0MIRdjw9Er4cECUhpRSlGgVS7poFkdAs2uc08/2TXV9lChoBmgJaA9DCLfVrDO+9HJAlIaUUpRoFUvJaBZHQLNrpOUt7KJ1fZQoaAZoCWgPQwiXGqGfKQ5wQJSGlFKUaBVL0GgWR0Cza9xLK3d9dX2UKGgGaAloD0MIyeiAJCwec0CUhpRSlGgVS+JoFkdAs2vimFaje3V9lChoBmgJaA9DCKMh41FqhHFAlIaUUpRoFUvJaBZHQLNr59wm3OR1fZQoaAZoCWgPQwhccXFUrk1wQJSGlFKUaBVLtGgWR0CzbAhh6SkkdX2UKGgGaAloD0MIiXlW0orickCUhpRSlGgVS89oFkdAs2wzfoA4oHV9lChoBmgJaA9DCNpVSPlJ23BAlIaUUpRoFUu+aBZHQLNsMxmCiAV1fZQoaAZoCWgPQwiEYcCS6xRzQJSGlFKUaBVLxGgWR0CzbGsscyWSdX2UKGgGaAloD0MI5Lz/j9MZcUCUhpRSlGgVS85oFkdAs2x5wYLsr3V9lChoBmgJaA9DCNZuu9DcEHFAlIaUUpRoFUvKaBZHQLNsf07r9l51fZQoaAZoCWgPQwiRY+sZAqRxQJSGlFKUaBVLwWgWR0CzbIeZb6gvdX2UKGgGaAloD0MIj8TL07mIb0CUhpRSlGgVS9BoFkdAs2yYbFS88XV9lChoBmgJaA9DCJgvL8B+Z3NAlIaUUpRoFUvRaBZHQLNsmdqtYCB1fZQoaAZoCWgPQwgd44qLo2xwQJSGlFKUaBVL1mgWR0CzbJ2Op84QdX2UKGgGaAloD0MIWDuKc1TPb0CUhpRSlGgVS8VoFkdAs2yt/ViF03V9lChoBmgJaA9DCFezzvi+lHJAlIaUUpRoFUvraBZHQLNssh1DBuZ1fZQoaAZoCWgPQwhfKcsQR75yQJSGlFKUaBVL92gWR0CzbLyeNDMNdX2UKGgGaAloD0MI86ykFR+OcECUhpRSlGgVS8doFkdAs2zGhYeT3nV9lChoBmgJaA9DCBR6/Um8cXBAlIaUUpRoFUvGaBZHQLNsxaEi+td1fZQoaAZoCWgPQwjtn6cBgwVwQJSGlFKUaBVLx2gWR0CzbNH/tICmdX2UKGgGaAloD0MIevzepv+ic0CUhpRSlGgVS85oFkdAs2zUZ4wAVHV9lChoBmgJaA9DCAVrnE1H1HFAlIaUUpRoFUvNaBZHQLNs6REWqLl1fZQoaAZoCWgPQwjB4QURKR9yQJSGlFKUaBVL52gWR0CzbPkNjLB9dX2UKGgGaAloD0MIHsNjP4tmcUCUhpRSlGgVS8BoFkdAs20GlVLi/HV9lChoBmgJaA9DCBR2UfQAL3JAlIaUUpRoFUvXaBZHQLNtDUz9CNV1fZQoaAZoCWgPQwjvqZz2lNVyQJSGlFKUaBVLzmgWR0CzbRmkN4JNdX2UKGgGaAloD0MI9kGWBRN8c0CUhpRSlGgVS7loFkdAs20tLkCFK3V9lChoBmgJaA9DCA75ZwZxfnNAlIaUUpRoFUvWaBZHQLNtM9KmKqJ1fZQoaAZoCWgPQwgRN6eSgXxuQJSGlFKUaBVLymgWR0CzbUFDjR2KdX2UKGgGaAloD0MIby2T4TgtcUCUhpRSlGgVS71oFkdAs21JkVeruXV9lChoBmgJaA9DCEiJXdvbyG9AlIaUUpRoFUu1aBZHQLNtWcfNiYt1fZQoaAZoCWgPQwh64jlbgHRyQJSGlFKUaBVL32gWR0CzbWSJoCdSdX2UKGgGaAloD0MInDBhNCu+c0CUhpRSlGgVS85oFkdAs21uD28IzHV9lChoBmgJaA9DCL0aoDRUlHJAlIaUUpRoFUvSaBZHQLNtiYgJTl11fZQoaAZoCWgPQwiQZ5dv/Z1vQJSGlFKUaBVLwGgWR0CzbYxTXJ5ndX2UKGgGaAloD0MIfzMxXci9cECUhpRSlGgVS75oFkdAs22aR5kbxXV9lChoBmgJaA9DCKq3BrZKHnNAlIaUUpRoFUvAaBZHQLNtrIMSbph1fZQoaAZoCWgPQwiRZFbvsOBwQJSGlFKUaBVLvGgWR0CzbcnaakRBdX2UKGgGaAloD0MIet6NBUWacECUhpRSlGgVS8hoFkdAs23Xfxc3VHV9lChoBmgJaA9DCPgYrDgVa3NAlIaUUpRoFUu+aBZHQLNt1sGgSOB1fZQoaAZoCWgPQwhDy7p/bEpyQJSGlFKUaBVL1mgWR0Czbdw+2VmjdX2UKGgGaAloD0MIFcYWghwoRECUhpRSlGgVS5JoFkdAs23gKjSG8HV9lChoBmgJaA9DCNDv+zfvznFAlIaUUpRoFUu+aBZHQLNuGDiOvMd1fZQoaAZoCWgPQwg1RBX+jLZxQJSGlFKUaBVLwmgWR0Czbh4o/iYLdX2UKGgGaAloD0MIPxpOmdvKc0CUhpRSlGgVS85oFkdAs25nsF+uvHV9lChoBmgJaA9DCJDaxMm90HJAlIaUUpRoFUvgaBZHQLNucz5oGpx1fZQoaAZoCWgPQwhB9Q8iGd5yQJSGlFKUaBVLxmgWR0CzbnohIOH4dX2UKGgGaAloD0MIE/JBzyZLcECUhpRSlGgVS7loFkdAs26Ks3hn8XV9lChoBmgJaA9DCBLAzeLF3HJAlIaUUpRoFUu4aBZHQLNutOVgQYl1fZQoaAZoCWgPQwjaxp+orHFxQJSGlFKUaBVLy2gWR0CzbtfqTr3TdX2UKGgGaAloD0MI+3WnO48jckCUhpRSlGgVS8xoFkdAs27j6fra/XV9lChoBmgJaA9DCDfBN00fiHJAlIaUUpRoFUvIaBZHQLNu5/bTMJR1fZQoaAZoCWgPQwi7DWq/tdVwQJSGlFKUaBVLuGgWR0Czbuc6q815dX2UKGgGaAloD0MIkPY/wNqIb0CUhpRSlGgVS9JoFkdAs27qq814xHV9lChoBmgJaA9DCBUDJJoAUnRAlIaUUpRoFUu/aBZHQLNvCGM4tHx1fZQoaAZoCWgPQwg42nHDL6lzQJSGlFKUaBVLyWgWR0Czbw7i2lVMdX2UKGgGaAloD0MInYNnQlNvcECUhpRSlGgVS7ZoFkdAs28Y6S1VpHV9lChoBmgJaA9DCCum0k84nHJAlIaUUpRoFUvSaBZHQLNvG0Ltu1p1fZQoaAZoCWgPQwi3YKku4GlMQJSGlFKUaBVLjmgWR0CzbxtA9mpVdX2UKGgGaAloD0MItr3dktyWcUCUhpRSlGgVS9hoFkdAs28aySmqHXV9lChoBmgJaA9DCLFre7tlonNAlIaUUpRoFUvIaBZHQLNvPLYwqRV1fZQoaAZoCWgPQwjH1F3ZhV5xQJSGlFKUaBVLvWgWR0Czbztd3SrpdX2UKGgGaAloD0MI1jbF42L1cUCUhpRSlGgVS91oFkdAs29AFyJbdXV9lChoBmgJaA9DCNr+lZUmrnFAlIaUUpRoFUvDaBZHQLNvU3bEgnt1fZQoaAZoCWgPQwjJyi+D8eFwQJSGlFKUaBVLt2gWR0Czb1ff0mMPdX2UKGgGaAloD0MI4e6s3faIcUCUhpRSlGgVS9xoFkdAs29hF+d9UnV9lChoBmgJaA9DCEBMwoX8AnNAlIaUUpRoFUu+aBZHQLNvd4W1twd1fZQoaAZoCWgPQwjDLLRzmnxyQJSGlFKUaBVLxWgWR0Czb3aTOgQIdX2UKGgGaAloD0MIvW987RkDc0CUhpRSlGgVS+poFkdAs293ko4MnnV9lChoBmgJaA9DCGak3lP5iHFAlIaUUpRoFUvDaBZHQLNvi4rz5Gl1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 930,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 256,
|
86 |
+
"n_epochs": 15,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
12hoe40n/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c80630fa49f15a572334b4f969bb43204051260c4691f700917335ec37c23a62
|
3 |
+
size 84893
|
12hoe40n/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:601dd8d966c881c0e4152b29ef4ba4dbe12ab504e8f03e5e63a5075d8609d796
|
3 |
+
size 43201
|
12hoe40n/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
12hoe40n/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.0-97-generic-x86_64-with-glibc2.10 #110~18.04.1-Ubuntu SMP Mon Jan 17 20:50:31 UTC 2022
|
2 |
+
Python: 3.8.10
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.9.0a0+c3d40fd
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.20.3
|
7 |
+
Gym: 0.21.0
|
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value: 284.
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 284.56 +/- 19.48
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f85a1618d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f85a1618dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f85a1618e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f85a1618ee0>", "_build": "<function ActorCriticPolicy._build at 0x7f85a1618f70>", "forward": "<function ActorCriticPolicy.forward at 0x7f85a161c040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f85a161c0d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f85a161c160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f85a161c1f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f85a161c280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f85a161c310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f85a160f9c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652014080.4665875, "learning_rate": 0.0001, "tensorboard_log": "runs/1wv9sri6", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAEBaHz4a5Jo/kW0CPt5M+b5ROKE+z8eRvAAAAAAAAAAARtJMvp8afj93o4i+YwEQvysrib6LyPe9AAAAAAAAAABA8OI9UrD/uTGcLjMHzNQqwAvCOqKE0rMAAIA/AACAPzNlCrx73p26S7wbNpeoHjFpxIO4/v8/tQAAgD8AAIA/uxOgvtCaOD+ZoLc+hQfrvsvbXr767mA+AAAAAAAAAADN3WA9T/IDvPAfcL3PTiA9ZAVwPbrFAr4AAIA/AACAP830vTzaVhY/0mygvfwryb4YyqE6F9cDvQAAAAAAAAAAALmrPM8UDbwHSQY8kZGOPDJtaz098W29AACAPwAAgD+aIz+8NxRkPrnTlD3fLau+WbLVvKsYSDwAAAAAAAAAAOZv+L0lm2Y+7RXKPh/Lm76CgFA9ckn5PQAAAAAAAAAApqmTvcNpVrpCqN64OYxitOj+cDqGlQA4AAAAAAAAAAB9Coi+8DdLPz/oKb7VK/m+ddrHvvBUOD0AAAAAAAAAAOaBej0Y+fI+kQ4Cvybm8r5usIq+UtEvvgAAAAAAAAAA5sW7PQH2DT/pesG9KizEvjQlET2dcIe9AAAAAAAAAABNh3C9e+aeukRiyTrBfYm1nPTMurP6dbQAAAAAAACAP5o51rsUhIC60/XUNvcHxzDeoL26I1H5tQAAgD8AAIA/ABBNuxlooz9/rTe9u+ILv/NwyTyWGoo9AAAAAAAAAAAAgEI5KRpVPhGjSD2Fp6C+ToQLvLKRyr0AAAAAAAAAAJr8k71a7ak/nbG4vvu/3b654ai9omBxvgAAAAAAAAAAzQa5PkkslD9qF4E+UUgEv2y2Jz+p4ga9AAAAAAAAAABAEwQ+pR0IP7wQF76/Vs++aqvxPODN0b0AAAAAAAAAAFrrFL55JZY+x32ePhNstb4qPqK8OvPGPQAAAAAAAAAAptidvXvm2rpUK6C8J2GFPIF7RzvqG2i9AACAPwAAgD+a2fI5VIKTvFjsvjselhk8THQFvizNAD0AAIA/AACAPzPlWLwJhRc9R/AbPgEPiL5FSpk9nuB8vQAAAAAAAAAAGmoyPR89xrvYdMo6EHSxPHf6Nz19iJS9AACAPwAAgD8a0SW9RQKHPDqnsD3mFpq+huWSvTIJSD0AAAAAAAAAAJotGT6YjAM/VS8xvq3oxb7GcBs9hBqvvQAAAAAAAAAAhm02vmrfJD8HkQa9H6zivgWTM76A2OM9AAAAAAAAAAAAPEk84by+upYyLjxkuVY1oMd7ufc5RTQAAIA/AACAP7OrGb2fmv48hLhBPsODlr4XHho9TmgAPQAAAAAAAAAABvUoPn2X1D5QQjy+r1PCvmLJ3ztiktm9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/pqsUU95c0CUhpRSlIwBbJRL4owBdJRHQKfSl1fVqet1fZQoaAZoCWgPQwjzAuyjk3RyQJSGlFKUaBVL8GgWR0Cn0upu2qkudX2UKGgGaAloD0MItvY+VUWGcUCUhpRSlGgVS9xoFkdAp9Mir3j+73V9lChoBmgJaA9DCFT/IJKhXnRAlIaUUpRoFUvpaBZHQKfTbZ9NN8F1fZQoaAZoCWgPQwid2a7QRy5wQJSGlFKUaBVNIAFoFkdAp9OD8zhxYXV9lChoBmgJaA9DCKeWrfXFi3FAlIaUUpRoFUvjaBZHQKfUL/5tWMl1fZQoaAZoCWgPQwjUZTGxefxtQJSGlFKUaBVNIAFoFkdAp9RS0F8ohXV9lChoBmgJaA9DCCjWqfK9NnJAlIaUUpRoFUvpaBZHQKfUdFfiPyV1fZQoaAZoCWgPQwgDfLd5Y9FuQJSGlFKUaBVL3mgWR0Cn1JcrAgxKdX2UKGgGaAloD0MIJ2a9GAqAcUCUhpRSlGgVS+5oFkdAp9SoTufEoHV9lChoBmgJaA9DCOvHJvlRHHNAlIaUUpRoFUvtaBZHQKfU2VtXPqt1fZQoaAZoCWgPQwgsmzkk9ahwQJSGlFKUaBVL6mgWR0Cn1NjDsMRZdX2UKGgGaAloD0MIxCedSPBPckCUhpRSlGgVS+1oFkdAp9TptelbeXV9lChoBmgJaA9DCK65o/9loXNAlIaUUpRoFUvfaBZHQKfVBVBD5TJ1fZQoaAZoCWgPQwhSfecXJd1xQJSGlFKUaBVL3WgWR0Cn1eFtTDO1dX2UKGgGaAloD0MI+dfyyrVgc0CUhpRSlGgVS9toFkdAp9Zq8e0XxnV9lChoBmgJaA9DCElHOZhNBnNAlIaUUpRoFUvnaBZHQKfW01AJLM91fZQoaAZoCWgPQwh5rYTuUmZzQJSGlFKUaBVL9GgWR0Cn10HKW9lFdX2UKGgGaAloD0MIO1ESEmltbkCUhpRSlGgVS+hoFkdAp9dW/WUbDXV9lChoBmgJaA9DCLt7gO7L7XBAlIaUUpRoFUvZaBZHQKfX50V8CxN1fZQoaAZoCWgPQwjO/dXjfj9zQJSGlFKUaBVL+WgWR0Cn2Ajye7L/dX2UKGgGaAloD0MI2pB/ZtAJcECUhpRSlGgVTTgBaBZHQKfYKxwhnrZ1fZQoaAZoCWgPQwg66BIOfVdwQJSGlFKUaBVL+2gWR0Cn2Jc580DVdX2UKGgGaAloD0MIHsAiv/5uckCUhpRSlGgVTQIBaBZHQKfZQM2m52B1fZQoaAZoCWgPQwj6QV2kUExwQJSGlFKUaBVL9GgWR0Cn2WmPPszEdX2UKGgGaAloD0MIjLysicVuckCUhpRSlGgVS+VoFkdAp9mAUDdP+HV9lChoBmgJaA9DCExsPq4N/29AlIaUUpRoFUvsaBZHQKfZn42S+xp1fZQoaAZoCWgPQwg4hZUKKiByQJSGlFKUaBVL7WgWR0Cn2bXgLqlhdX2UKGgGaAloD0MI0H05s93hcUCUhpRSlGgVS9xoFkdAp9m34/NZ/3V9lChoBmgJaA9DCBNIiV0bl3JAlIaUUpRoFU0DAWgWR0Cn2jGXw9aEdX2UKGgGaAloD0MIA8x8B3/HckCUhpRSlGgVS9doFkdAp9p/SfDk2nV9lChoBmgJaA9DCPVnP1KEJ3BAlIaUUpRoFUv5aBZHQKfbM2F36hx1fZQoaAZoCWgPQwjDuvHuyFlxQJSGlFKUaBVL72gWR0Cn20XyqdYodX2UKGgGaAloD0MIbVZ9rjbkbkCUhpRSlGgVS9xoFkdAp9uhSHdoFnV9lChoBmgJaA9DCGaH+IetOHJAlIaUUpRoFU0wAWgWR0Cn2/kPtlZpdX2UKGgGaAloD0MI9aCgFG1Bc0CUhpRSlGgVTbkCaBZHQKfcgk7fYSR1fZQoaAZoCWgPQwhv1uB9VV5xQJSGlFKUaBVL7mgWR0Cn3RzW5H3DdX2UKGgGaAloD0MIsWmlEMjpcUCUhpRSlGgVS+9oFkdAp91HWz4UOHV9lChoBmgJaA9DCIYcW8+Q7G9AlIaUUpRoFUvoaBZHQKfdrzDn/1h1fZQoaAZoCWgPQwi5bHTOj7tyQJSGlFKUaBVL8GgWR0Cn3a88DB/JdX2UKGgGaAloD0MIWG/UCtP+cUCUhpRSlGgVTQ4BaBZHQKfeLXWe6I51fZQoaAZoCWgPQwhZ2qm5XIBwQJSGlFKUaBVNBwFoFkdAp97HeFcps3V9lChoBmgJaA9DCOCD1y4tKnBAlIaUUpRoFU0NAWgWR0Cn3t4KYzBRdX2UKGgGaAloD0MIS8yzkpaCcUCUhpRSlGgVS9doFkdAp9/V9Sde6nV9lChoBmgJaA9DCJPGaB3V63JAlIaUUpRoFUvuaBZHQKff1ydWhh91fZQoaAZoCWgPQwglPQytDstwQJSGlFKUaBVL4WgWR0Cn4Cd1dPcjdX2UKGgGaAloD0MIVtKKbygCc0CUhpRSlGgVS9JoFkdAp+BVZA6dUnV9lChoBmgJaA9DCEsfuqD+pnBAlIaUUpRoFUv3aBZHQKfgpX9zfaZ1fZQoaAZoCWgPQwj9gt2wLc1wQJSGlFKUaBVNFQFoFkdAp+DpjFyaNXV9lChoBmgJaA9DCO/nFOTn73FAlIaUUpRoFUvWaBZHQKfhHULlV951fZQoaAZoCWgPQwioGyjwzi5xQJSGlFKUaBVL5mgWR0Cn4VHO8kD7dX2UKGgGaAloD0MIgh5q2zBYcUCUhpRSlGgVS+1oFkdAp+FbKs+3Y3V9lChoBmgJaA9DCDKSPUINHXNAlIaUUpRoFUvZaBZHQKfiOYCQtBh1fZQoaAZoCWgPQwi/RpIgHHNxQJSGlFKUaBVL42gWR0Cn4lfT1CgLdX2UKGgGaAloD0MI+yE2WHgPc0CUhpRSlGgVS/FoFkdAp+KV5MURF3V9lChoBmgJaA9DCICbxYvFR3FAlIaUUpRoFUvkaBZHQKfi2WuX/o91fZQoaAZoCWgPQwgUPlsHx4ZxQJSGlFKUaBVN8QFoFkdAp+L8JjUd73V9lChoBmgJaA9DCDj1geSdX3NAlIaUUpRoFUv5aBZHQKfjE5+6RQt1fZQoaAZoCWgPQwh+OEiIcoBwQJSGlFKUaBVNAAFoFkdAp+M+Lm6oVHV9lChoBmgJaA9DCAgEOpP213BAlIaUUpRoFU0UAWgWR0Cn45MyJsO5dX2UKGgGaAloD0MIXI3sSssXcUCUhpRSlGgVTQQBaBZHQKfj1u5SWJJ1fZQoaAZoCWgPQwg0ETY8/bFyQJSGlFKUaBVL82gWR0Cn4+DuSfUXdX2UKGgGaAloD0MIRgw7jIk5c0CUhpRSlGgVS+9oFkdAp+RIQarFO3V9lChoBmgJaA9DCJKTiVsFEXFAlIaUUpRoFUvhaBZHQKfkT8uSOip1fZQoaAZoCWgPQwhc5nRZzLFwQJSGlFKUaBVNCgFoFkdAp+SC7K7qZHV9lChoBmgJaA9DCNIZGHnZKXFAlIaUUpRoFUvjaBZHQKfks/20zCV1fZQoaAZoCWgPQwgs81ZdRytwQJSGlFKUaBVNDQFoFkdAp+TYMrmQsHV9lChoBmgJaA9DCDRLAtRU+W9AlIaUUpRoFUvraBZHQKfk+b8WKuV1fZQoaAZoCWgPQwi9p3Lak+9wQJSGlFKUaBVL6WgWR0Cn5Sc6V+qjdX2UKGgGaAloD0MI/PuMCwflcUCUhpRSlGgVS/5oFkdAp+XrmCAc1nV9lChoBmgJaA9DCLXhsDQwq3FAlIaUUpRoFUvzaBZHQKfmAMWoFV11fZQoaAZoCWgPQwjf3coSXcZxQJSGlFKUaBVL5GgWR0Cn5kaG5+YudX2UKGgGaAloD0MIJjRJLCk7cECUhpRSlGgVTRoBaBZHQKfmUWgvlEJ1fZQoaAZoCWgPQwg/48KBkFNwQJSGlFKUaBVL0GgWR0Cn5rAAQxvfdX2UKGgGaAloD0MIH73hPrLEcUCUhpRSlGgVS99oFkdAp+bSn+AEuHV9lChoBmgJaA9DCJ7t0Rsu2HFAlIaUUpRoFUvmaBZHQKfm2wN9YwJ1fZQoaAZoCWgPQwgn+RG/Yh9xQJSGlFKUaBVNAQFoFkdAp+cHk7wKB3V9lChoBmgJaA9DCAbxgR3/iG9AlIaUUpRoFUvjaBZHQKfnMgRK6Fx1fZQoaAZoCWgPQwiNDHIXYZBxQJSGlFKUaBVNBgFoFkdAp+d3IsAeaXV9lChoBmgJaA9DCFdaRur913FAlIaUUpRoFUv4aBZHQKfnjvn8sMB1fZQoaAZoCWgPQwgIBDqTNhtxQJSGlFKUaBVL12gWR0Cn55WnKnvVdX2UKGgGaAloD0MIhgFLrqJOcUCUhpRSlGgVTTEBaBZHQKfnn75VOsV1fZQoaAZoCWgPQwis5GN3AYFwQJSGlFKUaBVL7mgWR0Cn5/3dKujidX2UKGgGaAloD0MIuAGfH0YAb0CUhpRSlGgVS/poFkdAp+ildeIEbHV9lChoBmgJaA9DCNrlWx+WRXBAlIaUUpRoFUvoaBZHQKfosyrPt2N1fZQoaAZoCWgPQwgvpwTE5MBwQJSGlFKUaBVL4WgWR0Cn6LM90RvndX2UKGgGaAloD0MI2WDhJI01ckCUhpRSlGgVTUEBaBZHQKfowPK+zt11fZQoaAZoCWgPQwhOtoE7UAlwQJSGlFKUaBVNBQFoFkdAp+k2LvTgEXV9lChoBmgJaA9DCPrvwWvXKnJAlIaUUpRoFUvqaBZHQKfpSgV45cV1fZQoaAZoCWgPQwiitaLNcV9fQJSGlFKUaBVN6ANoFkdAp+lSM72crnV9lChoBmgJaA9DCAH5Eip4qHNAlIaUUpRoFUvoaBZHQKfpgDqW1MN1fZQoaAZoCWgPQwhO8E3Tp4pwQJSGlFKUaBVL0mgWR0Cn6Zl2FFlTdX2UKGgGaAloD0MIxXWMK+7vckCUhpRSlGgVTRUBaBZHQKfpt2criER1fZQoaAZoCWgPQwgTntDrzz9wQJSGlFKUaBVL52gWR0Cn6dqG1x82dX2UKGgGaAloD0MIKIHNObhdcUCUhpRSlGgVS/RoFkdAp+op4D9wWHV9lChoBmgJaA9DCKOTpda77XBAlIaUUpRoFU0KAWgWR0Cn6kdCNS62dX2UKGgGaAloD0MIKT+p9ikdcUCUhpRSlGgVS9doFkdAp+pSfBeok3V9lChoBmgJaA9DCPNV8rG7pG5AlIaUUpRoFUvnaBZHQKfqXnBciW51fZQoaAZoCWgPQwhi83Ft6BlyQJSGlFKUaBVL2GgWR0Cn6yP60pmVdX2UKGgGaAloD0MI3GgAbwH3ckCUhpRSlGgVS9FoFkdAp+s8189fTnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 690, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 15, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-97-generic-x86_64-with-glibc2.10 #110~18.04.1-Ubuntu SMP Mon Jan 17 20:50:31 UTC 2022", "Python": "3.8.12", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0a0+17540c5", "GPU Enabled": "True", "Numpy": "1.22.2", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa8c5b855e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa8c5b85670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa8c5b85700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa8c5b85790>", "_build": "<function ActorCriticPolicy._build at 0x7fa8c5b85820>", "forward": "<function ActorCriticPolicy.forward at 0x7fa8c5b858b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa8c5b85940>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa8c5b859d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa8c5b85a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa8c5b85af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa8c5b85b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa8c5b82510>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 40, "num_timesteps": 5079040, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652181902.4447286, "learning_rate": 0.0001, "tensorboard_log": "runs/12hoe40n", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQUAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABQAAAAAAAJpECL09VC27aVWbPTROV755gD49mWA4vwAAAAAAAIA/mgVePazPlj8ap5M+LsUpvwsTzD2krMk9AAAAAAAAAACzChS+b22KP9Uncr5RYhC/Z/ebvjiSX70AAAAAAAAAALZ7kD6U/1Q/TyoRPt7CC7+I6RM/OpMgPgAAAAAAAAAAZpmQPfZzKz9Y+Tu7hqEWv+PclD3lNw89AAAAAAAAAAAAZnq91kKdP8ohLL50QBe/ltEEvt3lm70AAAAAAAAAAMAwo710GYA+mh+9Pstz375Nx4k9zphpPgAAAAAAAAAAmmoDvRTonbq+7um2VQvbsUT7jLqq6AY2AACAPwAAgD8Nfo6947WkPxm2Jr9L5iu/aSMGvLxvRL4AAAAAAAAAABp6Fb5/jL0+ZkKpPr0TAr/eo3y9ZVAsPgAAAAAAAAAAGlsavWVXWz9L02m8D1kBvwvCp71K5G07AAAAAAAAAACzyXI9rl2VuohOIDiRmRQzTaepOsyHObcAAIA/AACAP2YuQzxcE3S6EOFguryBFrTBUmS6IeKBOQAAgD8AAIA/2nh4Pk7eNT+oxCC94YUEvwoZlj7waBC+AAAAAAAAAABNpSW9wyFoujCdDLRxnUaw53c8OhU2pTMAAIA/AACAP7NpHr6X63s/OuKmvuceCr/3U6i+emE7vgAAAAAAAAAAzQbBvJL2oT94XdG9BzMWvxQnib33AjK+AAAAAAAAAABmgN887N3Mu9PWir2RPDg8I/UrPYMpH70AAIA/AACAP0DlhD2ELS4/4W+hPQWaEL9MIPU9vNgCPQAAAAAAAAAA05EiPrdtCz/uk/+8H/n0vjK/jD6NA5i9AAAAAAAAAAAAxM47XGuUP0g7njyUkSu/OF2TvCpEZz0AAAAAAAAAAGboAzyPyWq8G/tvvQRSh7zrz7s9XhJQPgAAgD8AAIA/3RCAPlvnaT+La9A8ZaMLv7gpqT5XDBC9AAAAAAAAAAAtf4s+cLiKP6Y0xD613BG/TjrdPiAQgj0AAAAAAAAAALOAVD1sUoI/zK4UPqejIL8W0ro9AAd8PQAAAAAAAAAAHVGDPhd5jD+CrP4+MQURv6Aw0T5EYAE+AAAAAAAAAAAza7087N26u/4OUL1gvxA7dVAnPZtCHLwAAIA/AACAP5r5aLuPNl66of4cN+vzn7HiGGG7Xkc0tgAAgD8AAIA/mgWtPBTkpLpRfRO8+SCLPJA68zvWf3G9AACAPwAAgD/NXNM6e+yGurT1PTyjFKg8CKMlu7CwkD0AAIA/AACAPw0Kyr3nMxE/rmAsPpZHCb9xoOS9FkOQPQAAAAAAAAAAzbauPBtA7j3oqaI9op/RvmBYBD4E2509AAAAAAAAAAAAQKM8BUKVu2o40Dxdcis7g1X6vB6VNTwAAIA/AACAPybTo73uLsI+OkXyPdBvAL9rK4G9PirVPQAAAAAAAAAAAHuNPCmoVrrY6OazGRZDLic1OroLbKQzAACAPwAAgD86hyE+YVwJP+fjrb18duC+7To3Pktrvr0AAAAAAAAAAPMkg74c7oM/nPSOvi0iCr8XlPC+6Bi2uwAAAAAAAAAAQNMhvjJviT5e1/M+QWrjvhJ8/Lyb8kk+AAAAAAAAAACzI6e9iI+yP4ML3b4BeIK+RcOcvayjh74AAAAAAAAAAGY3uj0Gx5o/7PSYPt6CLr8uWAA+6goCPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksoSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVmwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSyiFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXVK13QSkckCUhpRSlIwBbJRLyYwBdJRHQLNqJ83uNPx1fZQoaAZoCWgPQwghlPdxNK5zQJSGlFKUaBVLymgWR0CzajRTXJ5ndX2UKGgGaAloD0MI2AxwQXZdcECUhpRSlGgVS81oFkdAs2oyzVtoBnV9lChoBmgJaA9DCKyt2F922HFAlIaUUpRoFUuzaBZHQLNqOBF/hEV1fZQoaAZoCWgPQwjAX8yW7DBxQJSGlFKUaBVL1GgWR0CzajXXRPXTdX2UKGgGaAloD0MIev8fJ8xvc0CUhpRSlGgVS7ZoFkdAs2pUGnn+ynV9lChoBmgJaA9DCDP9EvFWJ3JAlIaUUpRoFUvJaBZHQLNqV+otL+R1fZQoaAZoCWgPQwj8xWzJKmlxQJSGlFKUaBVLzmgWR0Czamsan753dX2UKGgGaAloD0MIkUQvo9jecUCUhpRSlGgVS+1oFkdAs2p4n4O+ZnV9lChoBmgJaA9DCDT1ukUgYnJAlIaUUpRoFUveaBZHQLNqfkUbkwN1fZQoaAZoCWgPQwhBfjZynQ9yQJSGlFKUaBVL3WgWR0Czan/pIMBqdX2UKGgGaAloD0MI26Z4XBSucUCUhpRSlGgVS81oFkdAs2qJXr+o+HV9lChoBmgJaA9DCB0gmKNH9HFAlIaUUpRoFUu0aBZHQLNqkASFoL51fZQoaAZoCWgPQwhM4xdeSalxQJSGlFKUaBVLzmgWR0CzapcuJ1q4dX2UKGgGaAloD0MITny1o7g7ckCUhpRSlGgVS9hoFkdAs2q5xLkCFXV9lChoBmgJaA9DCGcpWU5CJHJAlIaUUpRoFUvKaBZHQLNqveCTUy51fZQoaAZoCWgPQwjxEMZPo71yQJSGlFKUaBVL0WgWR0Czas/Sx7iRdX2UKGgGaAloD0MIFCaMZqURc0CUhpRSlGgVS99oFkdAs2rVAbADaHV9lChoBmgJaA9DCDhOCvNeuHJAlIaUUpRoFUvOaBZHQLNq7GOuJUJ1fZQoaAZoCWgPQwjbEyS2u9VwQJSGlFKUaBVL1mgWR0CzawZoXbdrdX2UKGgGaAloD0MIylNW0/VKUUCUhpRSlGgVS4loFkdAs2sLv+fh/HV9lChoBmgJaA9DCJfkgF3NhHFAlIaUUpRoFUuyaBZHQLNrGFa0Qbx1fZQoaAZoCWgPQwjlC1pIwIZyQJSGlFKUaBVL12gWR0Czaxs9r434dX2UKGgGaAloD0MITrSrkPJcckCUhpRSlGgVS8poFkdAs2s+xqwhXHV9lChoBmgJaA9DCCqr6Xoib3FAlIaUUpRoFUvUaBZHQLNrU38XN1R1fZQoaAZoCWgPQwhEUgslk7ZxQJSGlFKUaBVLw2gWR0Cza2WxhUiqdX2UKGgGaAloD0MIQZyHExhrc0CUhpRSlGgVS7toFkdAs2tlnscABHV9lChoBmgJaA9DCAaFQZlG6G9AlIaUUpRoFUvSaBZHQLNrc5LRKHx1fZQoaAZoCWgPQwi4yhMIu5dvQJSGlFKUaBVLwmgWR0Cza4ik9ECvdX2UKGgGaAloD0MIRdjw9Er4cECUhpRSlGgVS7poFkdAs2uc08/2TXV9lChoBmgJaA9DCLfVrDO+9HJAlIaUUpRoFUvJaBZHQLNrpOUt7KJ1fZQoaAZoCWgPQwiXGqGfKQ5wQJSGlFKUaBVL0GgWR0Cza9xLK3d9dX2UKGgGaAloD0MIyeiAJCwec0CUhpRSlGgVS+JoFkdAs2vimFaje3V9lChoBmgJaA9DCKMh41FqhHFAlIaUUpRoFUvJaBZHQLNr59wm3OR1fZQoaAZoCWgPQwhccXFUrk1wQJSGlFKUaBVLtGgWR0CzbAhh6SkkdX2UKGgGaAloD0MIiXlW0orickCUhpRSlGgVS89oFkdAs2wzfoA4oHV9lChoBmgJaA9DCNpVSPlJ23BAlIaUUpRoFUu+aBZHQLNsMxmCiAV1fZQoaAZoCWgPQwiEYcCS6xRzQJSGlFKUaBVLxGgWR0CzbGsscyWSdX2UKGgGaAloD0MI5Lz/j9MZcUCUhpRSlGgVS85oFkdAs2x5wYLsr3V9lChoBmgJaA9DCNZuu9DcEHFAlIaUUpRoFUvKaBZHQLNsf07r9l51fZQoaAZoCWgPQwiRY+sZAqRxQJSGlFKUaBVLwWgWR0CzbIeZb6gvdX2UKGgGaAloD0MIj8TL07mIb0CUhpRSlGgVS9BoFkdAs2yYbFS88XV9lChoBmgJaA9DCJgvL8B+Z3NAlIaUUpRoFUvRaBZHQLNsmdqtYCB1fZQoaAZoCWgPQwgd44qLo2xwQJSGlFKUaBVL1mgWR0CzbJ2Op84QdX2UKGgGaAloD0MIWDuKc1TPb0CUhpRSlGgVS8VoFkdAs2yt/ViF03V9lChoBmgJaA9DCFezzvi+lHJAlIaUUpRoFUvraBZHQLNssh1DBuZ1fZQoaAZoCWgPQwhfKcsQR75yQJSGlFKUaBVL92gWR0CzbLyeNDMNdX2UKGgGaAloD0MI86ykFR+OcECUhpRSlGgVS8doFkdAs2zGhYeT3nV9lChoBmgJaA9DCBR6/Um8cXBAlIaUUpRoFUvGaBZHQLNsxaEi+td1fZQoaAZoCWgPQwjtn6cBgwVwQJSGlFKUaBVLx2gWR0CzbNH/tICmdX2UKGgGaAloD0MIevzepv+ic0CUhpRSlGgVS85oFkdAs2zUZ4wAVHV9lChoBmgJaA9DCAVrnE1H1HFAlIaUUpRoFUvNaBZHQLNs6REWqLl1fZQoaAZoCWgPQwjB4QURKR9yQJSGlFKUaBVL52gWR0CzbPkNjLB9dX2UKGgGaAloD0MIHsNjP4tmcUCUhpRSlGgVS8BoFkdAs20GlVLi/HV9lChoBmgJaA9DCBR2UfQAL3JAlIaUUpRoFUvXaBZHQLNtDUz9CNV1fZQoaAZoCWgPQwjvqZz2lNVyQJSGlFKUaBVLzmgWR0CzbRmkN4JNdX2UKGgGaAloD0MI9kGWBRN8c0CUhpRSlGgVS7loFkdAs20tLkCFK3V9lChoBmgJaA9DCA75ZwZxfnNAlIaUUpRoFUvWaBZHQLNtM9KmKqJ1fZQoaAZoCWgPQwgRN6eSgXxuQJSGlFKUaBVLymgWR0CzbUFDjR2KdX2UKGgGaAloD0MIby2T4TgtcUCUhpRSlGgVS71oFkdAs21JkVeruXV9lChoBmgJaA9DCEiJXdvbyG9AlIaUUpRoFUu1aBZHQLNtWcfNiYt1fZQoaAZoCWgPQwh64jlbgHRyQJSGlFKUaBVL32gWR0CzbWSJoCdSdX2UKGgGaAloD0MInDBhNCu+c0CUhpRSlGgVS85oFkdAs21uD28IzHV9lChoBmgJaA9DCL0aoDRUlHJAlIaUUpRoFUvSaBZHQLNtiYgJTl11fZQoaAZoCWgPQwiQZ5dv/Z1vQJSGlFKUaBVLwGgWR0CzbYxTXJ5ndX2UKGgGaAloD0MIfzMxXci9cECUhpRSlGgVS75oFkdAs22aR5kbxXV9lChoBmgJaA9DCKq3BrZKHnNAlIaUUpRoFUvAaBZHQLNtrIMSbph1fZQoaAZoCWgPQwiRZFbvsOBwQJSGlFKUaBVLvGgWR0CzbcnaakRBdX2UKGgGaAloD0MIet6NBUWacECUhpRSlGgVS8hoFkdAs23Xfxc3VHV9lChoBmgJaA9DCPgYrDgVa3NAlIaUUpRoFUu+aBZHQLNt1sGgSOB1fZQoaAZoCWgPQwhDy7p/bEpyQJSGlFKUaBVL1mgWR0Czbdw+2VmjdX2UKGgGaAloD0MIFcYWghwoRECUhpRSlGgVS5JoFkdAs23gKjSG8HV9lChoBmgJaA9DCNDv+zfvznFAlIaUUpRoFUu+aBZHQLNuGDiOvMd1fZQoaAZoCWgPQwg1RBX+jLZxQJSGlFKUaBVLwmgWR0Czbh4o/iYLdX2UKGgGaAloD0MIPxpOmdvKc0CUhpRSlGgVS85oFkdAs25nsF+uvHV9lChoBmgJaA9DCJDaxMm90HJAlIaUUpRoFUvgaBZHQLNucz5oGpx1fZQoaAZoCWgPQwhB9Q8iGd5yQJSGlFKUaBVLxmgWR0CzbnohIOH4dX2UKGgGaAloD0MIE/JBzyZLcECUhpRSlGgVS7loFkdAs26Ks3hn8XV9lChoBmgJaA9DCBLAzeLF3HJAlIaUUpRoFUu4aBZHQLNutOVgQYl1fZQoaAZoCWgPQwjaxp+orHFxQJSGlFKUaBVLy2gWR0CzbtfqTr3TdX2UKGgGaAloD0MI+3WnO48jckCUhpRSlGgVS8xoFkdAs27j6fra/XV9lChoBmgJaA9DCDfBN00fiHJAlIaUUpRoFUvIaBZHQLNu5/bTMJR1fZQoaAZoCWgPQwi7DWq/tdVwQJSGlFKUaBVLuGgWR0Czbuc6q815dX2UKGgGaAloD0MIkPY/wNqIb0CUhpRSlGgVS9JoFkdAs27qq814xHV9lChoBmgJaA9DCBUDJJoAUnRAlIaUUpRoFUu/aBZHQLNvCGM4tHx1fZQoaAZoCWgPQwg42nHDL6lzQJSGlFKUaBVLyWgWR0Czbw7i2lVMdX2UKGgGaAloD0MInYNnQlNvcECUhpRSlGgVS7ZoFkdAs28Y6S1VpHV9lChoBmgJaA9DCCum0k84nHJAlIaUUpRoFUvSaBZHQLNvG0Ltu1p1fZQoaAZoCWgPQwi3YKku4GlMQJSGlFKUaBVLjmgWR0CzbxtA9mpVdX2UKGgGaAloD0MItr3dktyWcUCUhpRSlGgVS9hoFkdAs28aySmqHXV9lChoBmgJaA9DCLFre7tlonNAlIaUUpRoFUvIaBZHQLNvPLYwqRV1fZQoaAZoCWgPQwjH1F3ZhV5xQJSGlFKUaBVLvWgWR0Czbztd3SrpdX2UKGgGaAloD0MI1jbF42L1cUCUhpRSlGgVS91oFkdAs29AFyJbdXV9lChoBmgJaA9DCNr+lZUmrnFAlIaUUpRoFUvDaBZHQLNvU3bEgnt1fZQoaAZoCWgPQwjJyi+D8eFwQJSGlFKUaBVLt2gWR0Czb1ff0mMPdX2UKGgGaAloD0MI4e6s3faIcUCUhpRSlGgVS9xoFkdAs29hF+d9UnV9lChoBmgJaA9DCEBMwoX8AnNAlIaUUpRoFUu+aBZHQLNvd4W1twd1fZQoaAZoCWgPQwjDLLRzmnxyQJSGlFKUaBVLxWgWR0Czb3aTOgQIdX2UKGgGaAloD0MIvW987RkDc0CUhpRSlGgVS+poFkdAs293ko4MnnV9lChoBmgJaA9DCGak3lP5iHFAlIaUUpRoFUvDaBZHQLNvi4rz5Gl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 930, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 15, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-97-generic-x86_64-with-glibc2.10 #110~18.04.1-Ubuntu SMP Mon Jan 17 20:50:31 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.9.0a0+c3d40fd", "GPU Enabled": "True", "Numpy": "1.20.3", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06616c40541868a9f2a92be82adf3dd9bf34faf9f7ef6d386ff4f9d53f5c6f76
|
3 |
+
size 208828
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": 284.
|
|
|
1 |
+
{"mean_reward": 284.5606687360575, "std_reward": 19.47568947932063, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-10T20:21:48.141826"}
|