rlc-ppo-LunarLander-v2 / config.json
rianrajagede's picture
more timesteps1wv9sri6
b47b751
raw
history blame
15 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f85a1618d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f85a1618dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f85a1618e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f85a1618ee0>", "_build": "<function ActorCriticPolicy._build at 0x7f85a1618f70>", "forward": "<function ActorCriticPolicy.forward at 0x7f85a161c040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f85a161c0d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f85a161c160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f85a161c1f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f85a161c280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f85a161c310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f85a160f9c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652014080.4665875, "learning_rate": 0.0001, "tensorboard_log": "runs/1wv9sri6", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAEBaHz4a5Jo/kW0CPt5M+b5ROKE+z8eRvAAAAAAAAAAARtJMvp8afj93o4i+YwEQvysrib6LyPe9AAAAAAAAAABA8OI9UrD/uTGcLjMHzNQqwAvCOqKE0rMAAIA/AACAPzNlCrx73p26S7wbNpeoHjFpxIO4/v8/tQAAgD8AAIA/uxOgvtCaOD+ZoLc+hQfrvsvbXr767mA+AAAAAAAAAADN3WA9T/IDvPAfcL3PTiA9ZAVwPbrFAr4AAIA/AACAP830vTzaVhY/0mygvfwryb4YyqE6F9cDvQAAAAAAAAAAALmrPM8UDbwHSQY8kZGOPDJtaz098W29AACAPwAAgD+aIz+8NxRkPrnTlD3fLau+WbLVvKsYSDwAAAAAAAAAAOZv+L0lm2Y+7RXKPh/Lm76CgFA9ckn5PQAAAAAAAAAApqmTvcNpVrpCqN64OYxitOj+cDqGlQA4AAAAAAAAAAB9Coi+8DdLPz/oKb7VK/m+ddrHvvBUOD0AAAAAAAAAAOaBej0Y+fI+kQ4Cvybm8r5usIq+UtEvvgAAAAAAAAAA5sW7PQH2DT/pesG9KizEvjQlET2dcIe9AAAAAAAAAABNh3C9e+aeukRiyTrBfYm1nPTMurP6dbQAAAAAAACAP5o51rsUhIC60/XUNvcHxzDeoL26I1H5tQAAgD8AAIA/ABBNuxlooz9/rTe9u+ILv/NwyTyWGoo9AAAAAAAAAAAAgEI5KRpVPhGjSD2Fp6C+ToQLvLKRyr0AAAAAAAAAAJr8k71a7ak/nbG4vvu/3b654ai9omBxvgAAAAAAAAAAzQa5PkkslD9qF4E+UUgEv2y2Jz+p4ga9AAAAAAAAAABAEwQ+pR0IP7wQF76/Vs++aqvxPODN0b0AAAAAAAAAAFrrFL55JZY+x32ePhNstb4qPqK8OvPGPQAAAAAAAAAAptidvXvm2rpUK6C8J2GFPIF7RzvqG2i9AACAPwAAgD+a2fI5VIKTvFjsvjselhk8THQFvizNAD0AAIA/AACAPzPlWLwJhRc9R/AbPgEPiL5FSpk9nuB8vQAAAAAAAAAAGmoyPR89xrvYdMo6EHSxPHf6Nz19iJS9AACAPwAAgD8a0SW9RQKHPDqnsD3mFpq+huWSvTIJSD0AAAAAAAAAAJotGT6YjAM/VS8xvq3oxb7GcBs9hBqvvQAAAAAAAAAAhm02vmrfJD8HkQa9H6zivgWTM76A2OM9AAAAAAAAAAAAPEk84by+upYyLjxkuVY1oMd7ufc5RTQAAIA/AACAP7OrGb2fmv48hLhBPsODlr4XHho9TmgAPQAAAAAAAAAABvUoPn2X1D5QQjy+r1PCvmLJ3ztiktm9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/pqsUU95c0CUhpRSlIwBbJRL4owBdJRHQKfSl1fVqet1fZQoaAZoCWgPQwjzAuyjk3RyQJSGlFKUaBVL8GgWR0Cn0upu2qkudX2UKGgGaAloD0MItvY+VUWGcUCUhpRSlGgVS9xoFkdAp9Mir3j+73V9lChoBmgJaA9DCFT/IJKhXnRAlIaUUpRoFUvpaBZHQKfTbZ9NN8F1fZQoaAZoCWgPQwid2a7QRy5wQJSGlFKUaBVNIAFoFkdAp9OD8zhxYXV9lChoBmgJaA9DCKeWrfXFi3FAlIaUUpRoFUvjaBZHQKfUL/5tWMl1fZQoaAZoCWgPQwjUZTGxefxtQJSGlFKUaBVNIAFoFkdAp9RS0F8ohXV9lChoBmgJaA9DCCjWqfK9NnJAlIaUUpRoFUvpaBZHQKfUdFfiPyV1fZQoaAZoCWgPQwgDfLd5Y9FuQJSGlFKUaBVL3mgWR0Cn1JcrAgxKdX2UKGgGaAloD0MIJ2a9GAqAcUCUhpRSlGgVS+5oFkdAp9SoTufEoHV9lChoBmgJaA9DCOvHJvlRHHNAlIaUUpRoFUvtaBZHQKfU2VtXPqt1fZQoaAZoCWgPQwgsmzkk9ahwQJSGlFKUaBVL6mgWR0Cn1NjDsMRZdX2UKGgGaAloD0MIxCedSPBPckCUhpRSlGgVS+1oFkdAp9TptelbeXV9lChoBmgJaA9DCK65o/9loXNAlIaUUpRoFUvfaBZHQKfVBVBD5TJ1fZQoaAZoCWgPQwhSfecXJd1xQJSGlFKUaBVL3WgWR0Cn1eFtTDO1dX2UKGgGaAloD0MI+dfyyrVgc0CUhpRSlGgVS9toFkdAp9Zq8e0XxnV9lChoBmgJaA9DCElHOZhNBnNAlIaUUpRoFUvnaBZHQKfW01AJLM91fZQoaAZoCWgPQwh5rYTuUmZzQJSGlFKUaBVL9GgWR0Cn10HKW9lFdX2UKGgGaAloD0MIO1ESEmltbkCUhpRSlGgVS+hoFkdAp9dW/WUbDXV9lChoBmgJaA9DCLt7gO7L7XBAlIaUUpRoFUvZaBZHQKfX50V8CxN1fZQoaAZoCWgPQwjO/dXjfj9zQJSGlFKUaBVL+WgWR0Cn2Ajye7L/dX2UKGgGaAloD0MI2pB/ZtAJcECUhpRSlGgVTTgBaBZHQKfYKxwhnrZ1fZQoaAZoCWgPQwg66BIOfVdwQJSGlFKUaBVL+2gWR0Cn2Jc580DVdX2UKGgGaAloD0MIHsAiv/5uckCUhpRSlGgVTQIBaBZHQKfZQM2m52B1fZQoaAZoCWgPQwj6QV2kUExwQJSGlFKUaBVL9GgWR0Cn2WmPPszEdX2UKGgGaAloD0MIjLysicVuckCUhpRSlGgVS+VoFkdAp9mAUDdP+HV9lChoBmgJaA9DCExsPq4N/29AlIaUUpRoFUvsaBZHQKfZn42S+xp1fZQoaAZoCWgPQwg4hZUKKiByQJSGlFKUaBVL7WgWR0Cn2bXgLqlhdX2UKGgGaAloD0MI0H05s93hcUCUhpRSlGgVS9xoFkdAp9m34/NZ/3V9lChoBmgJaA9DCBNIiV0bl3JAlIaUUpRoFU0DAWgWR0Cn2jGXw9aEdX2UKGgGaAloD0MIA8x8B3/HckCUhpRSlGgVS9doFkdAp9p/SfDk2nV9lChoBmgJaA9DCPVnP1KEJ3BAlIaUUpRoFUv5aBZHQKfbM2F36hx1fZQoaAZoCWgPQwjDuvHuyFlxQJSGlFKUaBVL72gWR0Cn20XyqdYodX2UKGgGaAloD0MIbVZ9rjbkbkCUhpRSlGgVS9xoFkdAp9uhSHdoFnV9lChoBmgJaA9DCGaH+IetOHJAlIaUUpRoFU0wAWgWR0Cn2/kPtlZpdX2UKGgGaAloD0MI9aCgFG1Bc0CUhpRSlGgVTbkCaBZHQKfcgk7fYSR1fZQoaAZoCWgPQwhv1uB9VV5xQJSGlFKUaBVL7mgWR0Cn3RzW5H3DdX2UKGgGaAloD0MIsWmlEMjpcUCUhpRSlGgVS+9oFkdAp91HWz4UOHV9lChoBmgJaA9DCIYcW8+Q7G9AlIaUUpRoFUvoaBZHQKfdrzDn/1h1fZQoaAZoCWgPQwi5bHTOj7tyQJSGlFKUaBVL8GgWR0Cn3a88DB/JdX2UKGgGaAloD0MIWG/UCtP+cUCUhpRSlGgVTQ4BaBZHQKfeLXWe6I51fZQoaAZoCWgPQwhZ2qm5XIBwQJSGlFKUaBVNBwFoFkdAp97HeFcps3V9lChoBmgJaA9DCOCD1y4tKnBAlIaUUpRoFU0NAWgWR0Cn3t4KYzBRdX2UKGgGaAloD0MIS8yzkpaCcUCUhpRSlGgVS9doFkdAp9/V9Sde6nV9lChoBmgJaA9DCJPGaB3V63JAlIaUUpRoFUvuaBZHQKff1ydWhh91fZQoaAZoCWgPQwglPQytDstwQJSGlFKUaBVL4WgWR0Cn4Cd1dPcjdX2UKGgGaAloD0MIVtKKbygCc0CUhpRSlGgVS9JoFkdAp+BVZA6dUnV9lChoBmgJaA9DCEsfuqD+pnBAlIaUUpRoFUv3aBZHQKfgpX9zfaZ1fZQoaAZoCWgPQwj9gt2wLc1wQJSGlFKUaBVNFQFoFkdAp+DpjFyaNXV9lChoBmgJaA9DCO/nFOTn73FAlIaUUpRoFUvWaBZHQKfhHULlV951fZQoaAZoCWgPQwioGyjwzi5xQJSGlFKUaBVL5mgWR0Cn4VHO8kD7dX2UKGgGaAloD0MIgh5q2zBYcUCUhpRSlGgVS+1oFkdAp+FbKs+3Y3V9lChoBmgJaA9DCDKSPUINHXNAlIaUUpRoFUvZaBZHQKfiOYCQtBh1fZQoaAZoCWgPQwi/RpIgHHNxQJSGlFKUaBVL42gWR0Cn4lfT1CgLdX2UKGgGaAloD0MI+yE2WHgPc0CUhpRSlGgVS/FoFkdAp+KV5MURF3V9lChoBmgJaA9DCICbxYvFR3FAlIaUUpRoFUvkaBZHQKfi2WuX/o91fZQoaAZoCWgPQwgUPlsHx4ZxQJSGlFKUaBVN8QFoFkdAp+L8JjUd73V9lChoBmgJaA9DCDj1geSdX3NAlIaUUpRoFUv5aBZHQKfjE5+6RQt1fZQoaAZoCWgPQwh+OEiIcoBwQJSGlFKUaBVNAAFoFkdAp+M+Lm6oVHV9lChoBmgJaA9DCAgEOpP213BAlIaUUpRoFU0UAWgWR0Cn45MyJsO5dX2UKGgGaAloD0MIXI3sSssXcUCUhpRSlGgVTQQBaBZHQKfj1u5SWJJ1fZQoaAZoCWgPQwg0ETY8/bFyQJSGlFKUaBVL82gWR0Cn4+DuSfUXdX2UKGgGaAloD0MIRgw7jIk5c0CUhpRSlGgVS+9oFkdAp+RIQarFO3V9lChoBmgJaA9DCJKTiVsFEXFAlIaUUpRoFUvhaBZHQKfkT8uSOip1fZQoaAZoCWgPQwhc5nRZzLFwQJSGlFKUaBVNCgFoFkdAp+SC7K7qZHV9lChoBmgJaA9DCNIZGHnZKXFAlIaUUpRoFUvjaBZHQKfks/20zCV1fZQoaAZoCWgPQwgs81ZdRytwQJSGlFKUaBVNDQFoFkdAp+TYMrmQsHV9lChoBmgJaA9DCDRLAtRU+W9AlIaUUpRoFUvraBZHQKfk+b8WKuV1fZQoaAZoCWgPQwi9p3Lak+9wQJSGlFKUaBVL6WgWR0Cn5Sc6V+qjdX2UKGgGaAloD0MI/PuMCwflcUCUhpRSlGgVS/5oFkdAp+XrmCAc1nV9lChoBmgJaA9DCLXhsDQwq3FAlIaUUpRoFUvzaBZHQKfmAMWoFV11fZQoaAZoCWgPQwjf3coSXcZxQJSGlFKUaBVL5GgWR0Cn5kaG5+YudX2UKGgGaAloD0MIJjRJLCk7cECUhpRSlGgVTRoBaBZHQKfmUWgvlEJ1fZQoaAZoCWgPQwg/48KBkFNwQJSGlFKUaBVL0GgWR0Cn5rAAQxvfdX2UKGgGaAloD0MIH73hPrLEcUCUhpRSlGgVS99oFkdAp+bSn+AEuHV9lChoBmgJaA9DCJ7t0Rsu2HFAlIaUUpRoFUvmaBZHQKfm2wN9YwJ1fZQoaAZoCWgPQwgn+RG/Yh9xQJSGlFKUaBVNAQFoFkdAp+cHk7wKB3V9lChoBmgJaA9DCAbxgR3/iG9AlIaUUpRoFUvjaBZHQKfnMgRK6Fx1fZQoaAZoCWgPQwiNDHIXYZBxQJSGlFKUaBVNBgFoFkdAp+d3IsAeaXV9lChoBmgJaA9DCFdaRur913FAlIaUUpRoFUv4aBZHQKfnjvn8sMB1fZQoaAZoCWgPQwgIBDqTNhtxQJSGlFKUaBVL12gWR0Cn55WnKnvVdX2UKGgGaAloD0MIhgFLrqJOcUCUhpRSlGgVTTEBaBZHQKfnn75VOsV1fZQoaAZoCWgPQwis5GN3AYFwQJSGlFKUaBVL7mgWR0Cn5/3dKujidX2UKGgGaAloD0MIuAGfH0YAb0CUhpRSlGgVS/poFkdAp+ildeIEbHV9lChoBmgJaA9DCNrlWx+WRXBAlIaUUpRoFUvoaBZHQKfosyrPt2N1fZQoaAZoCWgPQwgvpwTE5MBwQJSGlFKUaBVL4WgWR0Cn6LM90RvndX2UKGgGaAloD0MI2WDhJI01ckCUhpRSlGgVTUEBaBZHQKfowPK+zt11fZQoaAZoCWgPQwhOtoE7UAlwQJSGlFKUaBVNBQFoFkdAp+k2LvTgEXV9lChoBmgJaA9DCPrvwWvXKnJAlIaUUpRoFUvqaBZHQKfpSgV45cV1fZQoaAZoCWgPQwiitaLNcV9fQJSGlFKUaBVN6ANoFkdAp+lSM72crnV9lChoBmgJaA9DCAH5Eip4qHNAlIaUUpRoFUvoaBZHQKfpgDqW1MN1fZQoaAZoCWgPQwhO8E3Tp4pwQJSGlFKUaBVL0mgWR0Cn6Zl2FFlTdX2UKGgGaAloD0MIxXWMK+7vckCUhpRSlGgVTRUBaBZHQKfpt2criER1fZQoaAZoCWgPQwgTntDrzz9wQJSGlFKUaBVL52gWR0Cn6dqG1x82dX2UKGgGaAloD0MIKIHNObhdcUCUhpRSlGgVS/RoFkdAp+op4D9wWHV9lChoBmgJaA9DCKOTpda77XBAlIaUUpRoFU0KAWgWR0Cn6kdCNS62dX2UKGgGaAloD0MIKT+p9ikdcUCUhpRSlGgVS9doFkdAp+pSfBeok3V9lChoBmgJaA9DCPNV8rG7pG5AlIaUUpRoFUvnaBZHQKfqXnBciW51fZQoaAZoCWgPQwhi83Ft6BlyQJSGlFKUaBVL2GgWR0Cn6yP60pmVdX2UKGgGaAloD0MI3GgAbwH3ckCUhpRSlGgVS9FoFkdAp+s8189fTnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 690, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 15, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-97-generic-x86_64-with-glibc2.10 #110~18.04.1-Ubuntu SMP Mon Jan 17 20:50:31 UTC 2022", "Python": "3.8.12", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0a0+17540c5", "GPU Enabled": "True", "Numpy": "1.22.2", "Gym": "0.21.0"}}