File size: 2,791 Bytes
2b80aa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff2f8a9
 
2b80aa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff2f8a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b80aa0
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---

library_name: transformers
base_model: dccuchile/albert-base-spanish
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: mi-super-modelo
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mi-super-modelo

This model is a fine-tuned version of [dccuchile/albert-base-spanish](https://huggingface.co/dccuchile/albert-base-spanish) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5146
- Accuracy: 0.38

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05

- train_batch_size: 8

- eval_batch_size: 8

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 1.7601        | 0.0455 | 2    | 1.7148          | 0.3333   |
| 1.7063        | 0.0909 | 4    | 1.6888          | 0.3      |
| 1.5512        | 0.1364 | 6    | 1.6585          | 0.2933   |
| 1.5312        | 0.1818 | 8    | 1.6514          | 0.3      |
| 1.5006        | 0.2273 | 10   | 1.6581          | 0.3      |
| 1.6519        | 0.2727 | 12   | 1.6511          | 0.3067   |
| 1.6397        | 0.3182 | 14   | 1.6347          | 0.3      |
| 1.5275        | 0.3636 | 16   | 1.6183          | 0.3067   |
| 1.8253        | 0.4091 | 18   | 1.5949          | 0.3      |
| 1.7725        | 0.4545 | 20   | 1.5708          | 0.3      |
| 1.5334        | 0.5    | 22   | 1.5591          | 0.3067   |
| 1.3062        | 0.5455 | 24   | 1.5535          | 0.3133   |
| 1.4629        | 0.5909 | 26   | 1.5459          | 0.32     |
| 1.5431        | 0.6364 | 28   | 1.5408          | 0.3333   |
| 1.62          | 0.6818 | 30   | 1.5355          | 0.36     |
| 1.4165        | 0.7273 | 32   | 1.5299          | 0.36     |
| 1.6135        | 0.7727 | 34   | 1.5244          | 0.3733   |
| 1.5181        | 0.8182 | 36   | 1.5220          | 0.3733   |
| 1.3877        | 0.8636 | 38   | 1.5196          | 0.3733   |
| 1.6638        | 0.9091 | 40   | 1.5174          | 0.3733   |
| 1.4348        | 0.9545 | 42   | 1.5154          | 0.38     |
| 1.4226        | 1.0    | 44   | 1.5146          | 0.38     |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.5.0
- Datasets 3.1.0
- Tokenizers 0.20.1