|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from transformers import PreTrainedModel |
|
|
|
from typing import List |
|
|
|
from .config import LidirlLSTMConfig |
|
|
|
def torch_max_no_pads(model_out, lengths): |
|
indices = torch.arange(model_out.size(1)).to(model_out.device) |
|
mask = (indices < lengths.view(-1, 1)).unsqueeze(-1).expand(model_out.size()) |
|
model_out = torch.where(mask, model_out, torch.tensor(-1e9)) |
|
max_pool = torch.max(model_out, 1)[0] |
|
return max_pool |
|
|
|
|
|
class ProjectionLayer(nn.Module): |
|
""" |
|
Noise-aware labels layer or traditional linear projection |
|
""" |
|
|
|
def __init__(self, hidden_dim, label_size, montecarlo_layer=False): |
|
super().__init__() |
|
self.montecarlo_layer = montecarlo_layer |
|
if montecarlo_layer: |
|
self.proj = MCSoftmaxDenseFA(hidden_dim, label_size, 1, logits_only=True) |
|
else: |
|
self.proj = nn.Linear(hidden_dim, label_size) |
|
|
|
def forward(self, x): |
|
return self.proj(x) |
|
|
|
|
|
class MinLSTMCell(nn.Module): |
|
""" |
|
https://arxiv.org/pdf/2410.01201 |
|
https://github.com/YecanLee/min-LSTM-torch/blob/main/minLSTMcell.py |
|
bidirectional and parallel |
|
hold layer depth and sweep out the other dimensions |
|
""" |
|
def __init__(self, |
|
embed_dim, |
|
hidden_dim): |
|
super(MinLSTMCell, self).__init__() |
|
self.embed_dim = embed_dim |
|
self.hidden_dim = hidden_dim |
|
self.output_dim = embed_dim |
|
|
|
|
|
self.linear_f = nn.Linear(embed_dim, hidden_dim) |
|
self.linear_i = nn.Linear(embed_dim, hidden_dim) |
|
self.linear_h = nn.Linear(embed_dim, hidden_dim) |
|
|
|
def parallel_scan_log(self, log_coeffs, log_values): |
|
|
|
|
|
a_star = F.pad(torch.cumsum(log_coeffs, dim=1), (0, 0, 1, 0)) |
|
log_h0_plus_b_star = torch.logcumsumexp( |
|
log_values - a_star, dim=1) |
|
log_h = a_star + log_h0_plus_b_star |
|
return torch.exp(log_h)[:, 1:] |
|
|
|
def g(self, x): |
|
return torch.where(x >= 0, x+0.5, torch.sigmoid(x)) |
|
|
|
def log_g(self, x): |
|
return torch.where(x >= 0, (F.relu(x)+0.5).log(), -F.softplus(-x)) |
|
|
|
def forward(self, inputs): |
|
h_init = torch.zeros(inputs.size(0), 1, self.hidden_dim, device=inputs.device) |
|
|
|
diff = F.softplus(-self.linear_f(inputs)) - F.softplus(-self.linear_i(inputs)) |
|
|
|
log_f = -F.softplus(diff) |
|
log_i = -F.softplus(-diff) |
|
log_h_0 = torch.log(h_init) |
|
|
|
log_tilde_h = self.log_g(self.linear_h(inputs)) |
|
|
|
h = self.parallel_scan_log(log_f, torch.cat([log_h_0, log_i + log_tilde_h], dim=1)) |
|
return h |
|
|
|
|
|
class LSTMBlock(nn.Module): |
|
def __init__(self, |
|
embed_dim : int = 512, |
|
hidden_dim : int = 2048, |
|
num_layers : int = 6, |
|
dropout : float = 0.1, |
|
bidirectional : bool = False |
|
): |
|
super(LSTMBlock, self).__init__() |
|
|
|
self.layers = [] |
|
last_dim = embed_dim |
|
for _ in range(num_layers): |
|
self.layers.append(MinLSTMCell(last_dim, hidden_dim)) |
|
self.layers.append(nn.LayerNorm(hidden_dim, elementwise_affine=True)) |
|
self.layers.append(nn.GELU()) |
|
self.layers.append(nn.Dropout(dropout)) |
|
last_dim = hidden_dim |
|
self.model = nn.Sequential(*self.layers) |
|
self.bidirectionality_term = 2 if bidirectional else 1 |
|
self.output_dim = hidden_dim * self.bidirectionality_term |
|
self.bidirectional = bidirectional |
|
|
|
def flip_sequence(self, inputs, lengths): |
|
|
|
|
|
new = [] |
|
for inp, leng in zip(inputs, lengths): |
|
new.append(inp[:leng].flip(0)) |
|
return pad_sequence(new, batch_first=True).to(inputs.device) |
|
|
|
def forward(self, inputs, lengths): |
|
encoding = self.model(inputs) |
|
last_token = encoding[torch.arange(encoding.size(0)), lengths - 1].view(inputs.size(0), 1, -1) |
|
if self.bidirectional: |
|
reverse_sequence = self.flip_sequence(inputs, lengths) |
|
reverse_encoding = self.model(reverse_sequence) |
|
reverse_last_token = reverse_encoding[torch.arange(reverse_encoding.size(0)), lengths - 1].view(inputs.size(0), 1, -1) |
|
last_token = torch.cat((last_token, reverse_last_token), dim=-1) |
|
|
|
return last_token, torch.ones((inputs.size(0), 1), device=inputs.device, dtype=torch.long) |
|
|
|
|
|
class LidirlLSTM(PreTrainedModel): |
|
""" |
|
Defines the Lidirl LSTM Model |
|
""" |
|
|
|
config_class = LidirlLSTMConfig |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.encoder = LSTMBlock( |
|
embed_dim = config.embed_dim, |
|
hidden_dim = config.hidden_dim, |
|
num_layers = config.num_layers, |
|
dropout = config.dropout, |
|
bidirectional = config.bidirectional |
|
) |
|
self.embed_layer = nn.Embedding(config.vocab_size, config.embed_dim) |
|
self.proj = ProjectionLayer(self.encoder.output_dim, config.label_size, config.montecarlo_layer) |
|
|
|
self.label_size = config.label_size |
|
self.max_length = config.max_length |
|
self.multilabel = config.multilabel |
|
self.monte_carlo = config.montecarlo_layer |
|
|
|
self.labels = ["" for _ in config.labels] |
|
for key, value in config.labels.items(): |
|
self.labels[value] = key |
|
|
|
def forward(self, inputs, lengths): |
|
inputs = inputs[:, :self.max_length] |
|
lengths = lengths.clamp(max=self.max_length) |
|
|
|
embeddings = self.embed_layer(inputs) |
|
encoding, lengths = self.encoder(embeddings, lengths=lengths) |
|
max_pool = torch_max_no_pads(encoding, lengths) |
|
projection = self.proj(max_pool) |
|
|
|
return projection |
|
|
|
def __call__(self, inputs, lengths): |
|
|
|
with torch.no_grad(): |
|
logits = self.forward(inputs, lengths) |
|
if self.multilabel: |
|
probs = torch.sigmoid(logits) |
|
else: |
|
probs = torch.softmax(logits, dim=-1) |
|
return probs |
|
|
|
def predict(self, inputs, lengths, threshold=0.5, top_k=None): |
|
probs = self.__call__(inputs, lengths) |
|
if top_k is not None and top_k > 0: |
|
top_k_preds = torch.topk(probs, top_k, dim=1) |
|
pred_labels = [] |
|
for pred, prob in zip(top_k_preds.indices, top_k_preds.values): |
|
pred_labels.append([(self.labels[p.item()], pr.item()) for (p, pr) in zip(pred, prob)]) |
|
return pred_labels |
|
if self.multilabel: |
|
batch_idx, label_idx = torch.where(probs > threshold) |
|
output = [[] for _ in range(len(inputs))] |
|
for batch, label in zip(batch_idx, label_idx): |
|
label_string = self.labels |
|
output[batch.item()].append( |
|
(self.labels[label.item()], probs[batch, label].item()) |
|
) |
|
return output |
|
|