File size: 9,506 Bytes
7ad2e16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import gradio as gr
import tempfile
import os
from pathlib import Path
from io import BytesIO
from settings import (
respond,
generate_random_string,
reset_interview,
generate_interview_report,
generate_report_from_file,
interview_history,
question_count,
language,
)
from ai_config import convert_text_to_speech, transcribe_audio, n_of_questions
from prompt_instructions import get_interview_initial_message_sarah, get_interview_initial_message_aaron
# Global variables
temp_audio_files = []
initial_audio_path = None
selected_interviewer = "Sarah"
def reset_interview_action(voice):
global question_count, interview_history, selected_interviewer
selected_interviewer = voice
question_count = 0
interview_history.clear()
if voice == "Sarah":
initial_message = get_interview_initial_message_sarah()
voice_setting = "alloy"
else:
initial_message = get_interview_initial_message_aaron()
voice_setting = "onyx"
initial_message = str(initial_message)
initial_audio_buffer = BytesIO()
convert_text_to_speech(initial_message, initial_audio_buffer, voice_setting)
initial_audio_buffer.seek(0)
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
temp_audio_path = temp_file.name
temp_file.write(initial_audio_buffer.getvalue())
temp_audio_files.append(temp_audio_path)
return (
[(None, initial_message[0] if isinstance(initial_message, tuple) else initial_message)],
gr.Audio(value=temp_audio_path, label=voice, autoplay=True),
gr.Textbox(value="")
)
def create_app():
global initial_audio_path, selected_interviewer
initial_message = get_interview_initial_message_sarah()
initial_audio_buffer = BytesIO()
convert_text_to_speech(initial_message, initial_audio_buffer, "alloy")
initial_audio_buffer.seek(0)
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
initial_audio_path = temp_file.name
temp_file.write(initial_audio_buffer.getvalue())
temp_audio_files.append(initial_audio_path)
with gr.Blocks(title="AI Clinical Psychologist Interviewer 𝚿") as demo:
gr.Image(value="appendix/icon.jpeg", label='icon', width=20, scale=1, show_label=False,
show_download_button=False, show_share_button=False)
gr.Markdown(
"""
# Clinical Psychologist Interviewer 𝚿
This chatbot conducts clinical interviews based on psychological knowledge.
The interviewer will prepare a clinical report based on the interview.
* Please note that this is a simulation and should not be used as a substitute for professional medical advice.
* It is important to emphasize that any information shared is confidential and cannot be accessed.
* In any case, it is recommended not to share sensitive information.
"""
)
with gr.Tab("Interview"):
with gr.Row():
reset_button = gr.Button("Select Interviewer", size='sm', scale=1)
voice_radio = gr.Radio(["Sarah", "Aaron"], label="Select Interviewer", value="Sarah", scale=1, info='Each interviewer has a unique approach and a different professional background.')
audio_output = gr.Audio(
label="Sarah",
scale=3,
value=initial_audio_path,
autoplay=True,
visible=True,
show_download_button=False,
)
chatbot = gr.Chatbot(value=[(None, f"{initial_message}")], label=f"Clinical Interview 𝚿📋")
with gr.Row():
msg = gr.Textbox(label="Type your message here...", scale=3)
audio_input = gr.Audio(sources=(["microphone"]), label="Record your message", type="filepath", scale=1)
send_button = gr.Button("Send")
pdf_output = gr.File(label="Download Report", visible=False)
def user(user_message, audio, history):
if audio is not None:
user_message = transcribe_audio(audio)
return "", None, history + [[user_message, None]]
def bot_response(chatbot, message, voice_selection):
global question_count, temp_audio_files, selected_interviewer
selected_interviewer = voice_selection
question_count += 1
last_user_message = chatbot[-1][0] if chatbot else message
voice = "alloy" if selected_interviewer == "Sarah" else "onyx"
response, audio_buffer = respond(chatbot, last_user_message, voice, selected_interviewer)
for bot_message in response:
chatbot.append((None, bot_message[1]))
if isinstance(audio_buffer, BytesIO):
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
temp_audio_path = temp_file.name
temp_file.write(audio_buffer.getvalue())
temp_audio_files.append(temp_audio_path)
audio_output = gr.Audio(value=temp_audio_path, label=voice_selection, autoplay=True)
else:
audio_output = gr.Audio(value=audio_buffer, label=voice_selection, autoplay=True)
if question_count >= n_of_questions():
conclusion_message = "Thank you for participating in this interview. We have reached the end of our session. I hope this conversation has been helpful. Take care!"
chatbot.append((None, conclusion_message))
conclusion_audio_buffer = BytesIO()
convert_text_to_speech(conclusion_message, conclusion_audio_buffer, voice)
conclusion_audio_buffer.seek(0)
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
temp_audio_path = temp_file.name
temp_file.write(conclusion_audio_buffer.getvalue())
temp_audio_files.append(temp_audio_path)
audio_output = gr.Audio(value=temp_audio_path, label=voice_selection, autoplay=True)
report_content, pdf_path = generate_interview_report(interview_history, language)
chatbot.append((None, f"Interview Report:\n\n{report_content}"))
return chatbot, audio_output, gr.File(visible=True, value=pdf_path)
return chatbot, audio_output, gr.File(visible=False)
msg.submit(user, [msg, audio_input, chatbot], [msg, audio_input, chatbot], queue=False).then(
bot_response, [chatbot, msg, voice_radio], [chatbot, audio_output, pdf_output]
)
send_button.click(user, [msg, audio_input, chatbot], [msg, audio_input, chatbot], queue=False).then(
bot_response, [chatbot, msg, voice_radio], [chatbot, audio_output, pdf_output]
)
reset_button.click(
reset_interview_action,
inputs=[voice_radio],
outputs=[chatbot, audio_output, msg]
)
with gr.Tab("Upload Document"):
gr.Markdown('Please upload a document that contains content written about a patient or by the patient.')
gr.Markdown('* Maximum length is up to 100K characters.')
gr.Markdown('* It is important to emphasize that the uploaded document is confidential and cannot be accessed.')
gr.Markdown('* In any case, it is recommended not to upload sensitive documents.')
file_input = gr.File(label="Upload a TXT, PDF, or DOCX file")
#language_input = gr.Textbox(label="Preferred Language for Report")
language_input = 'English'
generate_button = gr.Button("Generate Report")
report_output = gr.Textbox(label="Generated Report", lines=100, visible=False)
pdf_output = gr.File(label="Download Report", visible=True)
def generate_report_and_pdf(file, language):
report_content, pdf_path = generate_report_from_file(file, language)
return report_content, pdf_path, gr.File(visible=True)
generate_button.click(
generate_report_and_pdf,
inputs=[file_input],
outputs=[report_output, pdf_output, pdf_output]
)
with gr.Tab("Description"):
with open('appendix/description.txt', 'r', encoding='utf-8') as file:
description_txt = file.read()
gr.Markdown(description_txt)
gr.HTML("<div style='height: 15px;'></div>")
gr.Image(value="appendix/diagram.png", label='diagram', width=700, scale=1, show_label=False,
show_download_button=False, show_share_button=False)
return demo
# Clean up function
def cleanup():
global temp_audio_files, initial_audio_path
for audio_file in temp_audio_files:
if os.path.exists(audio_file):
os.unlink(audio_file)
temp_audio_files.clear()
if initial_audio_path and os.path.exists(initial_audio_path):
os.unlink(initial_audio_path)
if __name__ == "__main__":
app = create_app()
try:
app.launch()
finally:
cleanup() |