File size: 9,506 Bytes
7ad2e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import gradio as gr
import tempfile
import os
from pathlib import Path
from io import BytesIO
from settings import (
    respond,
    generate_random_string,
    reset_interview,
    generate_interview_report,
    generate_report_from_file,
    interview_history,
    question_count,
    language,
)
from ai_config import convert_text_to_speech, transcribe_audio, n_of_questions
from prompt_instructions import get_interview_initial_message_sarah, get_interview_initial_message_aaron

# Global variables
temp_audio_files = []
initial_audio_path = None
selected_interviewer = "Sarah"

def reset_interview_action(voice):
    global question_count, interview_history, selected_interviewer
    selected_interviewer = voice
    question_count = 0
    interview_history.clear()

    if voice == "Sarah":
        initial_message = get_interview_initial_message_sarah()
        voice_setting = "alloy"
    else:
        initial_message = get_interview_initial_message_aaron()
        voice_setting = "onyx"

    initial_message = str(initial_message)

    initial_audio_buffer = BytesIO()
    convert_text_to_speech(initial_message, initial_audio_buffer, voice_setting)
    initial_audio_buffer.seek(0)

    with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
        temp_audio_path = temp_file.name
        temp_file.write(initial_audio_buffer.getvalue())

    temp_audio_files.append(temp_audio_path)

    return (
        [(None, initial_message[0] if isinstance(initial_message, tuple) else initial_message)],
        gr.Audio(value=temp_audio_path, label=voice, autoplay=True),
        gr.Textbox(value="")
    )

def create_app():
    global initial_audio_path, selected_interviewer
    initial_message = get_interview_initial_message_sarah()

    initial_audio_buffer = BytesIO()
    convert_text_to_speech(initial_message, initial_audio_buffer, "alloy")
    initial_audio_buffer.seek(0)

    with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
        initial_audio_path = temp_file.name
        temp_file.write(initial_audio_buffer.getvalue())

    temp_audio_files.append(initial_audio_path)

    with gr.Blocks(title="AI Clinical Psychologist Interviewer 𝚿") as demo:
        gr.Image(value="appendix/icon.jpeg", label='icon', width=20, scale=1, show_label=False,
                 show_download_button=False, show_share_button=False)
        gr.Markdown(
            """
            # Clinical Psychologist Interviewer 𝚿
            This chatbot conducts clinical interviews based on psychological knowledge.

            The interviewer will prepare a clinical report based on the interview.
            
            * Please note that this is a simulation and should not be used as a substitute for professional medical advice.
            * It is important to emphasize that any information shared is confidential and cannot be accessed. 
            * In any case, it is recommended not to share sensitive information.
            """
        )

        with gr.Tab("Interview"):
            with gr.Row():
                reset_button = gr.Button("Select Interviewer", size='sm', scale=1)
                voice_radio = gr.Radio(["Sarah", "Aaron"], label="Select Interviewer", value="Sarah", scale=1, info='Each interviewer has a unique approach and a different professional background.')
                audio_output = gr.Audio(
                    label="Sarah",
                    scale=3,
                    value=initial_audio_path,
                    autoplay=True,
                    visible=True,
                    show_download_button=False,
                )

            chatbot = gr.Chatbot(value=[(None, f"{initial_message}")], label=f"Clinical Interview 𝚿📋")
            with gr.Row():
                msg = gr.Textbox(label="Type your message here...", scale=3)
                audio_input = gr.Audio(sources=(["microphone"]), label="Record your message", type="filepath", scale=1)
            send_button = gr.Button("Send")
            pdf_output = gr.File(label="Download Report", visible=False)

            def user(user_message, audio, history):
                if audio is not None:
                    user_message = transcribe_audio(audio)
                return "", None, history + [[user_message, None]]

            def bot_response(chatbot, message, voice_selection):
                global question_count, temp_audio_files, selected_interviewer
                selected_interviewer = voice_selection
                question_count += 1

                last_user_message = chatbot[-1][0] if chatbot else message

                voice = "alloy" if selected_interviewer == "Sarah" else "onyx"
                response, audio_buffer = respond(chatbot, last_user_message, voice, selected_interviewer)

                for bot_message in response:
                    chatbot.append((None, bot_message[1]))

                if isinstance(audio_buffer, BytesIO):
                    with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
                        temp_audio_path = temp_file.name
                        temp_file.write(audio_buffer.getvalue())
                    temp_audio_files.append(temp_audio_path)
                    audio_output = gr.Audio(value=temp_audio_path, label=voice_selection, autoplay=True)
                else:
                    audio_output = gr.Audio(value=audio_buffer, label=voice_selection, autoplay=True)

                if question_count >= n_of_questions():
                    conclusion_message = "Thank you for participating in this interview. We have reached the end of our session. I hope this conversation has been helpful. Take care!"
                    chatbot.append((None, conclusion_message))

                    conclusion_audio_buffer = BytesIO()
                    convert_text_to_speech(conclusion_message, conclusion_audio_buffer, voice)
                    conclusion_audio_buffer.seek(0)

                    with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
                        temp_audio_path = temp_file.name
                        temp_file.write(conclusion_audio_buffer.getvalue())
                    temp_audio_files.append(temp_audio_path)
                    audio_output = gr.Audio(value=temp_audio_path, label=voice_selection, autoplay=True)

                    report_content, pdf_path = generate_interview_report(interview_history, language)
                    chatbot.append((None, f"Interview Report:\n\n{report_content}"))

                    return chatbot, audio_output, gr.File(visible=True, value=pdf_path)

                return chatbot, audio_output, gr.File(visible=False)

            msg.submit(user, [msg, audio_input, chatbot], [msg, audio_input, chatbot], queue=False).then(
                bot_response, [chatbot, msg, voice_radio], [chatbot, audio_output, pdf_output]
            )

            send_button.click(user, [msg, audio_input, chatbot], [msg, audio_input, chatbot], queue=False).then(
                bot_response, [chatbot, msg, voice_radio], [chatbot, audio_output, pdf_output]
            )

            reset_button.click(
                reset_interview_action,
                inputs=[voice_radio],
                outputs=[chatbot, audio_output, msg]
            )

        with gr.Tab("Upload Document"):
            gr.Markdown('Please upload a document that contains content written about a patient or by the patient.')
            gr.Markdown('* Maximum length is up to 100K characters.')
            gr.Markdown('* It is important to emphasize that the uploaded document is confidential and cannot be accessed.')
            gr.Markdown('* In any case, it is recommended not to upload sensitive documents.')
            file_input = gr.File(label="Upload a TXT, PDF, or DOCX file")
            #language_input = gr.Textbox(label="Preferred Language for Report")
            language_input = 'English'
            generate_button = gr.Button("Generate Report")
            report_output = gr.Textbox(label="Generated Report", lines=100, visible=False)
            pdf_output = gr.File(label="Download Report", visible=True)

            def generate_report_and_pdf(file, language):
                report_content, pdf_path = generate_report_from_file(file, language)
                return report_content, pdf_path, gr.File(visible=True)

            generate_button.click(
                generate_report_and_pdf,
                inputs=[file_input],
                outputs=[report_output, pdf_output, pdf_output]
            )
        with gr.Tab("Description"):
            with open('appendix/description.txt', 'r', encoding='utf-8') as file:
                description_txt = file.read()
            gr.Markdown(description_txt)
            gr.HTML("<div style='height: 15px;'></div>")
            gr.Image(value="appendix/diagram.png", label='diagram', width=700, scale=1, show_label=False,
                     show_download_button=False, show_share_button=False)

    return demo

# Clean up function
def cleanup():
    global temp_audio_files, initial_audio_path
    for audio_file in temp_audio_files:
        if os.path.exists(audio_file):
            os.unlink(audio_file)
    temp_audio_files.clear()

    if initial_audio_path and os.path.exists(initial_audio_path):
        os.unlink(initial_audio_path)

if __name__ == "__main__":
    app = create_app()
    try:
        app.launch()
    finally:
        cleanup()