renee127 commited on
Commit
cad5dc9
·
1 Parent(s): 47ccb7d

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 259.80 +/- 18.08
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa94ff2a700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa94ff2a790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa94ff2a820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa94ff2a8b0>", "_build": "<function ActorCriticPolicy._build at 0x7fa94ff2a940>", "forward": "<function ActorCriticPolicy.forward at 0x7fa94ff2a9d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa94ff2aa60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa94ff2aaf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa94ff2ab80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa94ff2ac10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa94ff2aca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa94ff249c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671562184587553872, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALpBFb6UVRg/yRnCPXzcWr7X1V68hq3jPAAAAAAAAAAAAAGkPeT6sj4CoSW+1FZUvt9hFbwBS8Q8AAAAAAAAAADaZRY+jJr4PmJzML4hhbm+LndZO2okFL0AAAAAAAAAAM05vzz8Kp0/xR0IPt6E1L4tx789tcVOPQAAAAAAAAAAExUVPkTKKz8QSui8c3e1vqvexz1/a6s8AAAAAAAAAADNTMi9KdgduiskljfR72oy4EAWunKkqrYAAIA/AAAAADMBLrxSh6q7yW8ouzKMiDtQKBI9rvaGvAAAgD8AAIA/Wvuxvfb8NrqiP5W1KueLtItwy7oTl1w0AACAPwAAAABzWU6+QphUPrSyGT75lBK+wmV9vN0TzDsAAAAAAAAAAHM8mb2OiqU/1lfYvjQiz76bLZC9oAoUvgAAAAAAAAAATacfvo7Sqj+aFSm/R1DQvotxJr6qZGa+AAAAAAAAAADa1Rc+/8SRP8Q8Gj9gvOO+Pz/+Pfjpaj4AAAAAAAAAALMoWT16wKE/nF2yPsrw2b5iaKU9au5ePgAAAAAAAAAAXRFRvi3bKj5uSvU96ZUwvrbueLxR9j69AAAAAAAAAABmMje94RSOuixcxzIZQNywxgpBOyxHGbMAAIA/AACAPxrXej4CgDE/Y7h0vraJnL5FTnE92DOGvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOxkcJW9zcUCUhpRSlIwBbJRNHQGMAXSUR0CT2sW912aEdX2UKGgGaAloD0MILZRMTu2xb0CUhpRSlGgVTWkBaBZHQJPbrqRlpXZ1fZQoaAZoCWgPQwgTRx6I7N5xQJSGlFKUaBVNlAFoFkdAk9uuxfOUuHV9lChoBmgJaA9DCKjF4GFa3G5AlIaUUpRoFU0sAWgWR0CT27kK/mDEdX2UKGgGaAloD0MIIhtIFxt2bkCUhpRSlGgVTRQBaBZHQJPb1PnB+F11fZQoaAZoCWgPQwjhRV9BGk9vQJSGlFKUaBVNdAFoFkdAk91+bNKRMnV9lChoBmgJaA9DCNid7jxx9nBAlIaUUpRoFU0hAWgWR0CT3Y0WM0gsdX2UKGgGaAloD0MIxXb3AF14bkCUhpRSlGgVTT4BaBZHQJPd+yjYZl51fZQoaAZoCWgPQwj+J3/3jlpAQJSGlFKUaBVNAgFoFkdAk+CDXFtKqXV9lChoBmgJaA9DCFddh2pKNW1AlIaUUpRoFU0PAWgWR0CT4TgKWszVdX2UKGgGaAloD0MI5rFmZBAPbECUhpRSlGgVTR0BaBZHQJPijgYP5Hp1fZQoaAZoCWgPQwjtfaoKDYw9QJSGlFKUaBVL4WgWR0CT4ucxTKkmdX2UKGgGaAloD0MI72/QXn1TcECUhpRSlGgVTTkBaBZHQJPjgzvZyuJ1fZQoaAZoCWgPQwhJaMu5VE9zQJSGlFKUaBVNEAFoFkdAk+OoKQaJh3V9lChoBmgJaA9DCHrjpDDvSG1AlIaUUpRoFU1eAWgWR0CT5HGTs6aLdX2UKGgGaAloD0MIIQa69gXtb0CUhpRSlGgVTToBaBZHQJPk7Ho5ggJ1fZQoaAZoCWgPQwjuJvimKZJwQJSGlFKUaBVNGgFoFkdAk+T3jU/fO3V9lChoBmgJaA9DCMaGbvaHYHNAlIaUUpRoFU1CAWgWR0CT5mb8m8dxdX2UKGgGaAloD0MI1SZO7vfsb0CUhpRSlGgVTUoBaBZHQJPmjx6OYIB1fZQoaAZoCWgPQwj5LxAESFhtQJSGlFKUaBVNGAFoFkdAk+cQnYxtYXV9lChoBmgJaA9DCCkiwypeTXBAlIaUUpRoFU0VAWgWR0CT53E+PikwdX2UKGgGaAloD0MIMh6lEt6VcECUhpRSlGgVTSoBaBZHQJPnj8aXKKZ1fZQoaAZoCWgPQwiwx0RKc51xQJSGlFKUaBVNHwFoFkdAk+pNhJAdGXV9lChoBmgJaA9DCPw1WaNeqHFAlIaUUpRoFU0PAWgWR0CT66nPE87qdX2UKGgGaAloD0MIpMfvbbr5cUCUhpRSlGgVTQwBaBZHQJPr5cbBGhF1fZQoaAZoCWgPQwgXoG016+FwQJSGlFKUaBVNfANoFkdAk+wfu5SWJXV9lChoBmgJaA9DCFbzHJGvrXJAlIaUUpRoFU1OAWgWR0CT7M655JK8dX2UKGgGaAloD0MI6DHKM+8acUCUhpRSlGgVTTIBaBZHQJPuJ/nW8RN1fZQoaAZoCWgPQwi9rIkF/iBxQJSGlFKUaBVNEwFoFkdAk+5XlfZ26nV9lChoBmgJaA9DCNFALJv5+3BAlIaUUpRoFU0kAWgWR0CT7nUb1h9cdX2UKGgGaAloD0MIjzaOWIv1bkCUhpRSlGgVTTIBaBZHQJPvfL1VYIV1fZQoaAZoCWgPQwiKsOHpFftvQJSGlFKUaBVNYgFoFkdAk++4bbUPQXV9lChoBmgJaA9DCLUWZqGdM3FAlIaUUpRoFU0KAWgWR0CT8FVVxS5zdX2UKGgGaAloD0MIXp7OFSUVcUCUhpRSlGgVTScBaBZHQJPwpNQCSzR1fZQoaAZoCWgPQwggQlw5u2ZxQJSGlFKUaBVNLAFoFkdAk/Dt70Fr23V9lChoBmgJaA9DCEPHDirxq3JAlIaUUpRoFU2oAmgWR0CT8aTqSowVdX2UKGgGaAloD0MIl+Kqsu/gakCUhpRSlGgVTU0BaBZHQJPzIyylenh1fZQoaAZoCWgPQwhyFva0g/xxQJSGlFKUaBVNAQFoFkdAk/VFKK5083V9lChoBmgJaA9DCMNGWb/Zk3FAlIaUUpRoFU03AWgWR0CT9YKZlWfcdX2UKGgGaAloD0MIs12hD5YgbkCUhpRSlGgVTRYBaBZHQJP12U3XI2h1fZQoaAZoCWgPQwgo84++SZpwQJSGlFKUaBVNLAFoFkdAk/ZsVclgMXV9lChoBmgJaA9DCL+2fvpPwnFAlIaUUpRoFU08AWgWR0CT+A9VFQVLdX2UKGgGaAloD0MI/dtlv+6Hb0CUhpRSlGgVTRoBaBZHQJP4D1yvLYB1fZQoaAZoCWgPQwiBJVex+HtCQJSGlFKUaBVL0mgWR0CT+SLm6oVEdX2UKGgGaAloD0MI/DkF+dl8cUCUhpRSlGgVTTMBaBZHQJP5QpsoDxN1fZQoaAZoCWgPQwhxWBr4UQdyQJSGlFKUaBVNHwFoFkdAk/mRufmLcnV9lChoBmgJaA9DCEDa/wArUXBAlIaUUpRoFU0NAWgWR0CT+m1cMVk+dX2UKGgGaAloD0MIRS+jWK42cECUhpRSlGgVTUYBaBZHQJQOb1OCXhR1fZQoaAZoCWgPQwjFVzuK8xZwQJSGlFKUaBVNgQFoFkdAlA8jF6zE8HV9lChoBmgJaA9DCE4oRMAhr25AlIaUUpRoFU0FAWgWR0CUD6xsl9jPdX2UKGgGaAloD0MI7N/1mbNubECUhpRSlGgVTQABaBZHQJQSMSYgJTl1fZQoaAZoCWgPQwhK8fEJWXVxQJSGlFKUaBVNowFoFkdAlBLFw5vLo3V9lChoBmgJaA9DCBWQ9j8AN3FAlIaUUpRoFU0CAWgWR0CUEuvECNjtdX2UKGgGaAloD0MIgSOBBptZakCUhpRSlGgVTbMBaBZHQJQTBpUPxx11fZQoaAZoCWgPQwhX7C+7J0duQJSGlFKUaBVNLAFoFkdAlBNHpSrHVHV9lChoBmgJaA9DCDV5ymq6bG1AlIaUUpRoFU0wAWgWR0CUE5cLBsQ/dX2UKGgGaAloD0MI1PIDVzn5ckCUhpRSlGgVS/xoFkdAlBUS8SPEKnV9lChoBmgJaA9DCJ+rrdifIXFAlIaUUpRoFU0wAWgWR0CUFc2KEWZadX2UKGgGaAloD0MIRrJHqNlMcECUhpRSlGgVTQMBaBZHQJQWjz+WGAV1fZQoaAZoCWgPQwibcK/MG+tyQJSGlFKUaBVNLwFoFkdAlBc95UtI1HV9lChoBmgJaA9DCE4mbhWEiXBAlIaUUpRoFU0+AWgWR0CUF3Cqp97XdX2UKGgGaAloD0MIK/aX3ZNLbUCUhpRSlGgVTSMBaBZHQJQYWAwwj+t1fZQoaAZoCWgPQwi7tOGwNLVxQJSGlFKUaBVNFAFoFkdAlBkI5YHPeHV9lChoBmgJaA9DCMdkcf8R1m9AlIaUUpRoFU1oAWgWR0CUG5JhOP/8dX2UKGgGaAloD0MIQKIJFDHqbkCUhpRSlGgVTQkBaBZHQJQcxV81Gb11fZQoaAZoCWgPQwhblq/LsDdzQJSGlFKUaBVNHwFoFkdAlBzQgs9SuXV9lChoBmgJaA9DCHUBLzNsh3FAlIaUUpRoFU0pAWgWR0CUHQgbZOBUdX2UKGgGaAloD0MIRRK9jOKwcUCUhpRSlGgVTTgBaBZHQJQdEdYGMXJ1fZQoaAZoCWgPQwhhp1g1CIdfQJSGlFKUaBVN6ANoFkdAlB2wC0WuYHV9lChoBmgJaA9DCIy+gjTjcXFAlIaUUpRoFU0wAWgWR0CUHbkgfU4JdX2UKGgGaAloD0MIEjElkujDcUCUhpRSlGgVTToBaBZHQJQdx+SbH6x1fZQoaAZoCWgPQwjy0k1iUNtxQJSGlFKUaBVNJQJoFkdAlB5OCkGiYnV9lChoBmgJaA9DCCBdbFop63BAlIaUUpRoFU0sAWgWR0CUH0EEC/47dX2UKGgGaAloD0MIjgdb7PbYbECUhpRSlGgVTTYBaBZHQJQg749HMEB1fZQoaAZoCWgPQwjrkJvhxpNyQJSGlFKUaBVNDgFoFkdAlCFdQTEiuHV9lChoBmgJaA9DCKgY52/ChXBAlIaUUpRoFU1EAWgWR0CUIgHxBmf5dX2UKGgGaAloD0MIfjhIiLJWcUCUhpRSlGgVTUkBaBZHQJQiVFhG6PN1fZQoaAZoCWgPQwjRBfUts61yQJSGlFKUaBVNgwFoFkdAlCKnDej2z3V9lChoBmgJaA9DCBu7RPWWQ3FAlIaUUpRoFU0vAWgWR0CUIwHVPN3XdX2UKGgGaAloD0MIejiB6bS1bUCUhpRSlGgVS/5oFkdAlCS76UJOWXV9lChoBmgJaA9DCP1LUpniHG9AlIaUUpRoFU0uAWgWR0CUJRNgjQiSdX2UKGgGaAloD0MI9BlQb4YMcUCUhpRSlGgVTQABaBZHQJQljQ6ZH/d1fZQoaAZoCWgPQwhS7j7Hx9FwQJSGlFKUaBVNIQFoFkdAlCWeObRWtHV9lChoBmgJaA9DCIcW2c63N3BAlIaUUpRoFU0aAWgWR0CUJaZPEbYLdX2UKGgGaAloD0MI/5QqUbYWckCUhpRSlGgVTSQBaBZHQJQluuMdcSp1fZQoaAZoCWgPQwgjFcYWgqdyQJSGlFKUaBVNIwFoFkdAlCZvag261HV9lChoBmgJaA9DCHqmlxhLuHJAlIaUUpRoFU0kAWgWR0CUJnA7gbZOdX2UKGgGaAloD0MIa/RqgJJjcECUhpRSlGgVTR8BaBZHQJQn6otL+P11fZQoaAZoCWgPQwgjTFEuzY9xQJSGlFKUaBVNYgFoFkdAlCkLyH2ys3V9lChoBmgJaA9DCL37471qx3JAlIaUUpRoFU0nAWgWR0CUKopMpPRBdX2UKGgGaAloD0MIx5+obNhgbECUhpRSlGgVTRwBaBZHQJQq4lzEJjV1fZQoaAZoCWgPQwhlUkMbAHpwQJSGlFKUaBVNHAFoFkdAlCtQjyFwk3V9lChoBmgJaA9DCGrecYrOC3BAlIaUUpRoFU0jAWgWR0CUK/ZZ0SyudX2UKGgGaAloD0MIup9TkJ/FQUCUhpRSlGgVS9ZoFkdAlCwH6/IsAnV9lChoBmgJaA9DCMQmMnNBlXBAlIaUUpRoFU0yAWgWR0CULN6vJRwZdX2UKGgGaAloD0MIZ+22C41JcUCUhpRSlGgVTTsBaBZHQJQvIlnh86V1fZQoaAZoCWgPQwiPG343nbFyQJSGlFKUaBVNIgFoFkdAlC8u76Hj63V9lChoBmgJaA9DCPFmDd7XqG5AlIaUUpRoFU0BAWgWR0CULzCA+Y+jdX2UKGgGaAloD0MITIxl+mXAckCUhpRSlGgVTSIBaBZHQJQva0UoKD11fZQoaAZoCWgPQwgvTny1I9ltQJSGlFKUaBVNCQFoFkdAlC97ZSNwSHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2dcd041c321d871f1a5e90eff5b66d2e8cfd287b96c6e9e7e77c1714294a03d9
3
+ size 147214
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa94ff2a700>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa94ff2a790>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa94ff2a820>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa94ff2a8b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fa94ff2a940>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fa94ff2a9d0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa94ff2aa60>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fa94ff2aaf0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa94ff2ab80>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa94ff2ac10>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa94ff2aca0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fa94ff249c0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671562184587553872,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALpBFb6UVRg/yRnCPXzcWr7X1V68hq3jPAAAAAAAAAAAAAGkPeT6sj4CoSW+1FZUvt9hFbwBS8Q8AAAAAAAAAADaZRY+jJr4PmJzML4hhbm+LndZO2okFL0AAAAAAAAAAM05vzz8Kp0/xR0IPt6E1L4tx789tcVOPQAAAAAAAAAAExUVPkTKKz8QSui8c3e1vqvexz1/a6s8AAAAAAAAAADNTMi9KdgduiskljfR72oy4EAWunKkqrYAAIA/AAAAADMBLrxSh6q7yW8ouzKMiDtQKBI9rvaGvAAAgD8AAIA/Wvuxvfb8NrqiP5W1KueLtItwy7oTl1w0AACAPwAAAABzWU6+QphUPrSyGT75lBK+wmV9vN0TzDsAAAAAAAAAAHM8mb2OiqU/1lfYvjQiz76bLZC9oAoUvgAAAAAAAAAATacfvo7Sqj+aFSm/R1DQvotxJr6qZGa+AAAAAAAAAADa1Rc+/8SRP8Q8Gj9gvOO+Pz/+Pfjpaj4AAAAAAAAAALMoWT16wKE/nF2yPsrw2b5iaKU9au5ePgAAAAAAAAAAXRFRvi3bKj5uSvU96ZUwvrbueLxR9j69AAAAAAAAAABmMje94RSOuixcxzIZQNywxgpBOyxHGbMAAIA/AACAPxrXej4CgDE/Y7h0vraJnL5FTnE92DOGvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOxkcJW9zcUCUhpRSlIwBbJRNHQGMAXSUR0CT2sW912aEdX2UKGgGaAloD0MILZRMTu2xb0CUhpRSlGgVTWkBaBZHQJPbrqRlpXZ1fZQoaAZoCWgPQwgTRx6I7N5xQJSGlFKUaBVNlAFoFkdAk9uuxfOUuHV9lChoBmgJaA9DCKjF4GFa3G5AlIaUUpRoFU0sAWgWR0CT27kK/mDEdX2UKGgGaAloD0MIIhtIFxt2bkCUhpRSlGgVTRQBaBZHQJPb1PnB+F11fZQoaAZoCWgPQwjhRV9BGk9vQJSGlFKUaBVNdAFoFkdAk91+bNKRMnV9lChoBmgJaA9DCNid7jxx9nBAlIaUUpRoFU0hAWgWR0CT3Y0WM0gsdX2UKGgGaAloD0MIxXb3AF14bkCUhpRSlGgVTT4BaBZHQJPd+yjYZl51fZQoaAZoCWgPQwj+J3/3jlpAQJSGlFKUaBVNAgFoFkdAk+CDXFtKqXV9lChoBmgJaA9DCFddh2pKNW1AlIaUUpRoFU0PAWgWR0CT4TgKWszVdX2UKGgGaAloD0MI5rFmZBAPbECUhpRSlGgVTR0BaBZHQJPijgYP5Hp1fZQoaAZoCWgPQwjtfaoKDYw9QJSGlFKUaBVL4WgWR0CT4ucxTKkmdX2UKGgGaAloD0MI72/QXn1TcECUhpRSlGgVTTkBaBZHQJPjgzvZyuJ1fZQoaAZoCWgPQwhJaMu5VE9zQJSGlFKUaBVNEAFoFkdAk+OoKQaJh3V9lChoBmgJaA9DCHrjpDDvSG1AlIaUUpRoFU1eAWgWR0CT5HGTs6aLdX2UKGgGaAloD0MIIQa69gXtb0CUhpRSlGgVTToBaBZHQJPk7Ho5ggJ1fZQoaAZoCWgPQwjuJvimKZJwQJSGlFKUaBVNGgFoFkdAk+T3jU/fO3V9lChoBmgJaA9DCMaGbvaHYHNAlIaUUpRoFU1CAWgWR0CT5mb8m8dxdX2UKGgGaAloD0MI1SZO7vfsb0CUhpRSlGgVTUoBaBZHQJPmjx6OYIB1fZQoaAZoCWgPQwj5LxAESFhtQJSGlFKUaBVNGAFoFkdAk+cQnYxtYXV9lChoBmgJaA9DCCkiwypeTXBAlIaUUpRoFU0VAWgWR0CT53E+PikwdX2UKGgGaAloD0MIMh6lEt6VcECUhpRSlGgVTSoBaBZHQJPnj8aXKKZ1fZQoaAZoCWgPQwiwx0RKc51xQJSGlFKUaBVNHwFoFkdAk+pNhJAdGXV9lChoBmgJaA9DCPw1WaNeqHFAlIaUUpRoFU0PAWgWR0CT66nPE87qdX2UKGgGaAloD0MIpMfvbbr5cUCUhpRSlGgVTQwBaBZHQJPr5cbBGhF1fZQoaAZoCWgPQwgXoG016+FwQJSGlFKUaBVNfANoFkdAk+wfu5SWJXV9lChoBmgJaA9DCFbzHJGvrXJAlIaUUpRoFU1OAWgWR0CT7M655JK8dX2UKGgGaAloD0MI6DHKM+8acUCUhpRSlGgVTTIBaBZHQJPuJ/nW8RN1fZQoaAZoCWgPQwi9rIkF/iBxQJSGlFKUaBVNEwFoFkdAk+5XlfZ26nV9lChoBmgJaA9DCNFALJv5+3BAlIaUUpRoFU0kAWgWR0CT7nUb1h9cdX2UKGgGaAloD0MIjzaOWIv1bkCUhpRSlGgVTTIBaBZHQJPvfL1VYIV1fZQoaAZoCWgPQwiKsOHpFftvQJSGlFKUaBVNYgFoFkdAk++4bbUPQXV9lChoBmgJaA9DCLUWZqGdM3FAlIaUUpRoFU0KAWgWR0CT8FVVxS5zdX2UKGgGaAloD0MIXp7OFSUVcUCUhpRSlGgVTScBaBZHQJPwpNQCSzR1fZQoaAZoCWgPQwggQlw5u2ZxQJSGlFKUaBVNLAFoFkdAk/Dt70Fr23V9lChoBmgJaA9DCEPHDirxq3JAlIaUUpRoFU2oAmgWR0CT8aTqSowVdX2UKGgGaAloD0MIl+Kqsu/gakCUhpRSlGgVTU0BaBZHQJPzIyylenh1fZQoaAZoCWgPQwhyFva0g/xxQJSGlFKUaBVNAQFoFkdAk/VFKK5083V9lChoBmgJaA9DCMNGWb/Zk3FAlIaUUpRoFU03AWgWR0CT9YKZlWfcdX2UKGgGaAloD0MIs12hD5YgbkCUhpRSlGgVTRYBaBZHQJP12U3XI2h1fZQoaAZoCWgPQwgo84++SZpwQJSGlFKUaBVNLAFoFkdAk/ZsVclgMXV9lChoBmgJaA9DCL+2fvpPwnFAlIaUUpRoFU08AWgWR0CT+A9VFQVLdX2UKGgGaAloD0MI/dtlv+6Hb0CUhpRSlGgVTRoBaBZHQJP4D1yvLYB1fZQoaAZoCWgPQwiBJVex+HtCQJSGlFKUaBVL0mgWR0CT+SLm6oVEdX2UKGgGaAloD0MI/DkF+dl8cUCUhpRSlGgVTTMBaBZHQJP5QpsoDxN1fZQoaAZoCWgPQwhxWBr4UQdyQJSGlFKUaBVNHwFoFkdAk/mRufmLcnV9lChoBmgJaA9DCEDa/wArUXBAlIaUUpRoFU0NAWgWR0CT+m1cMVk+dX2UKGgGaAloD0MIRS+jWK42cECUhpRSlGgVTUYBaBZHQJQOb1OCXhR1fZQoaAZoCWgPQwjFVzuK8xZwQJSGlFKUaBVNgQFoFkdAlA8jF6zE8HV9lChoBmgJaA9DCE4oRMAhr25AlIaUUpRoFU0FAWgWR0CUD6xsl9jPdX2UKGgGaAloD0MI7N/1mbNubECUhpRSlGgVTQABaBZHQJQSMSYgJTl1fZQoaAZoCWgPQwhK8fEJWXVxQJSGlFKUaBVNowFoFkdAlBLFw5vLo3V9lChoBmgJaA9DCBWQ9j8AN3FAlIaUUpRoFU0CAWgWR0CUEuvECNjtdX2UKGgGaAloD0MIgSOBBptZakCUhpRSlGgVTbMBaBZHQJQTBpUPxx11fZQoaAZoCWgPQwhX7C+7J0duQJSGlFKUaBVNLAFoFkdAlBNHpSrHVHV9lChoBmgJaA9DCDV5ymq6bG1AlIaUUpRoFU0wAWgWR0CUE5cLBsQ/dX2UKGgGaAloD0MI1PIDVzn5ckCUhpRSlGgVS/xoFkdAlBUS8SPEKnV9lChoBmgJaA9DCJ+rrdifIXFAlIaUUpRoFU0wAWgWR0CUFc2KEWZadX2UKGgGaAloD0MIRrJHqNlMcECUhpRSlGgVTQMBaBZHQJQWjz+WGAV1fZQoaAZoCWgPQwibcK/MG+tyQJSGlFKUaBVNLwFoFkdAlBc95UtI1HV9lChoBmgJaA9DCE4mbhWEiXBAlIaUUpRoFU0+AWgWR0CUF3Cqp97XdX2UKGgGaAloD0MIK/aX3ZNLbUCUhpRSlGgVTSMBaBZHQJQYWAwwj+t1fZQoaAZoCWgPQwi7tOGwNLVxQJSGlFKUaBVNFAFoFkdAlBkI5YHPeHV9lChoBmgJaA9DCMdkcf8R1m9AlIaUUpRoFU1oAWgWR0CUG5JhOP/8dX2UKGgGaAloD0MIQKIJFDHqbkCUhpRSlGgVTQkBaBZHQJQcxV81Gb11fZQoaAZoCWgPQwhblq/LsDdzQJSGlFKUaBVNHwFoFkdAlBzQgs9SuXV9lChoBmgJaA9DCHUBLzNsh3FAlIaUUpRoFU0pAWgWR0CUHQgbZOBUdX2UKGgGaAloD0MIRRK9jOKwcUCUhpRSlGgVTTgBaBZHQJQdEdYGMXJ1fZQoaAZoCWgPQwhhp1g1CIdfQJSGlFKUaBVN6ANoFkdAlB2wC0WuYHV9lChoBmgJaA9DCIy+gjTjcXFAlIaUUpRoFU0wAWgWR0CUHbkgfU4JdX2UKGgGaAloD0MIEjElkujDcUCUhpRSlGgVTToBaBZHQJQdx+SbH6x1fZQoaAZoCWgPQwjy0k1iUNtxQJSGlFKUaBVNJQJoFkdAlB5OCkGiYnV9lChoBmgJaA9DCCBdbFop63BAlIaUUpRoFU0sAWgWR0CUH0EEC/47dX2UKGgGaAloD0MIjgdb7PbYbECUhpRSlGgVTTYBaBZHQJQg749HMEB1fZQoaAZoCWgPQwjrkJvhxpNyQJSGlFKUaBVNDgFoFkdAlCFdQTEiuHV9lChoBmgJaA9DCKgY52/ChXBAlIaUUpRoFU1EAWgWR0CUIgHxBmf5dX2UKGgGaAloD0MIfjhIiLJWcUCUhpRSlGgVTUkBaBZHQJQiVFhG6PN1fZQoaAZoCWgPQwjRBfUts61yQJSGlFKUaBVNgwFoFkdAlCKnDej2z3V9lChoBmgJaA9DCBu7RPWWQ3FAlIaUUpRoFU0vAWgWR0CUIwHVPN3XdX2UKGgGaAloD0MIejiB6bS1bUCUhpRSlGgVS/5oFkdAlCS76UJOWXV9lChoBmgJaA9DCP1LUpniHG9AlIaUUpRoFU0uAWgWR0CUJRNgjQiSdX2UKGgGaAloD0MI9BlQb4YMcUCUhpRSlGgVTQABaBZHQJQljQ6ZH/d1fZQoaAZoCWgPQwhS7j7Hx9FwQJSGlFKUaBVNIQFoFkdAlCWeObRWtHV9lChoBmgJaA9DCIcW2c63N3BAlIaUUpRoFU0aAWgWR0CUJaZPEbYLdX2UKGgGaAloD0MI/5QqUbYWckCUhpRSlGgVTSQBaBZHQJQluuMdcSp1fZQoaAZoCWgPQwgjFcYWgqdyQJSGlFKUaBVNIwFoFkdAlCZvag261HV9lChoBmgJaA9DCHqmlxhLuHJAlIaUUpRoFU0kAWgWR0CUJnA7gbZOdX2UKGgGaAloD0MIa/RqgJJjcECUhpRSlGgVTR8BaBZHQJQn6otL+P11fZQoaAZoCWgPQwgjTFEuzY9xQJSGlFKUaBVNYgFoFkdAlCkLyH2ys3V9lChoBmgJaA9DCL37471qx3JAlIaUUpRoFU0nAWgWR0CUKopMpPRBdX2UKGgGaAloD0MIx5+obNhgbECUhpRSlGgVTRwBaBZHQJQq4lzEJjV1fZQoaAZoCWgPQwhlUkMbAHpwQJSGlFKUaBVNHAFoFkdAlCtQjyFwk3V9lChoBmgJaA9DCGrecYrOC3BAlIaUUpRoFU0jAWgWR0CUK/ZZ0SyudX2UKGgGaAloD0MIup9TkJ/FQUCUhpRSlGgVS9ZoFkdAlCwH6/IsAnV9lChoBmgJaA9DCMQmMnNBlXBAlIaUUpRoFU0yAWgWR0CULN6vJRwZdX2UKGgGaAloD0MIZ+22C41JcUCUhpRSlGgVTTsBaBZHQJQvIlnh86V1fZQoaAZoCWgPQwiPG343nbFyQJSGlFKUaBVNIgFoFkdAlC8u76Hj63V9lChoBmgJaA9DCPFmDd7XqG5AlIaUUpRoFU0BAWgWR0CULzCA+Y+jdX2UKGgGaAloD0MITIxl+mXAckCUhpRSlGgVTSIBaBZHQJQva0UoKD11fZQoaAZoCWgPQwgvTny1I9ltQJSGlFKUaBVNCQFoFkdAlC97ZSNwSHVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e0c25a195d92f6e19fbd85d8679feae926cc47e1ebb251b364d4f4ce51a6cef
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1dce95bd15a90969dae86e55a40b57cfe5a753b7a20e64702a0f088045267413
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (197 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 259.79687769227814, "std_reward": 18.07981659383706, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-20T19:14:41.791555"}