from flask import Flask, request, render_template from transformers import AutoModelForCausalLM, AutoTokenizer import torch app = Flask(__name__) # Load fine-tuned model and tokenizer model_path = "./finetuned_weights" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path) device = torch.device("cpu") model.to(device) @app.route('/') def home(): return render_template('index.html') @app.route('/generate', methods=['POST']) def generate(): user_input = request.form['prompt'].strip() prompt = f"<|USER|> {user_input} <|ASSISTANT|> " inputs = tokenizer(prompt, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_length=100, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) response = generated_text.split("<|ASSISTANT|> ")[-1] if "<|ASSISTANT|> " in generated_text else generated_text return response if __name__ == '__main__': app.run(debug=True)