Upload t5_project_all_in_one.py
Browse files- t5_project_all_in_one.py +58 -45
t5_project_all_in_one.py
CHANGED
@@ -8,28 +8,38 @@ import torch
|
|
8 |
import matplotlib.pyplot as plt
|
9 |
|
10 |
# Step 1: Log in to Hugging Face
|
11 |
-
# Students: Replace
|
12 |
-
hf_token = "YOUR_HUGGING_FACE_TOKEN"
|
13 |
-
if not hf_token or hf_token == "YOUR_HUGGING_FACE_TOKEN":
|
14 |
-
raise ValueError("Please replace 'YOUR_HUGGING_FACE_TOKEN'
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
17 |
|
18 |
# Step 2: Load and convert dataset
|
19 |
-
# Students: Replace
|
20 |
-
dataset_name = "dataset.
|
21 |
dataset_path = dataset_name
|
|
|
|
|
22 |
if dataset_name.endswith('.csv'):
|
23 |
-
|
24 |
print(f"Converting {dataset_name} to JSON format...")
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
28 |
|
29 |
# Load dataset
|
30 |
print(f"Loading dataset from {dataset_path}...")
|
31 |
-
|
32 |
-
|
|
|
|
|
33 |
# Step 3: Split dataset into training and validation
|
34 |
# 85% training, 15% validation to monitor model performance
|
35 |
print("Splitting dataset into training and validation sets...")
|
@@ -39,12 +49,14 @@ eval_dataset = train_test_split['test']
|
|
39 |
|
40 |
# Step 4: Download and load tokenizer and model
|
41 |
print("Downloading T5-small model and tokenizer...")
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
model.save_pretrained('./t5_small_weights')
|
46 |
-
tokenizer.save_pretrained('./t5_small_weights')
|
47 |
-
print("Model and tokenizer saved to './t5_small_weights'")
|
|
|
|
|
48 |
|
49 |
# Step 5: Preprocess dataset
|
50 |
# This ensures the input questions and answers are properly tokenized for T5
|
@@ -52,43 +64,42 @@ def preprocess_data(examples):
|
|
52 |
# Add "question:" prefix to inputs and clean whitespace
|
53 |
inputs = ["question: " + q.strip() for q in examples['input']]
|
54 |
targets = [r.strip() for r in examples['response']]
|
55 |
-
|
56 |
model_inputs = tokenizer(inputs, max_length=128, truncation=True, padding='max_length')
|
57 |
# Tokenize labels (answers)
|
58 |
labels = tokenizer(targets, max_length=64, truncation=True, padding='max_length')
|
59 |
-
# Replace pad token IDs in labels with -100 to ignore them in loss calculation
|
60 |
model_inputs['labels'] = [
|
61 |
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels['input_ids']
|
62 |
]
|
63 |
return model_inputs
|
64 |
|
65 |
-
# Apply preprocessing to training and validation datasets
|
66 |
print("Preprocessing datasets...")
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
69 |
|
70 |
# Step 6: Define training arguments
|
71 |
-
# These settings control how the model is fine-tuned
|
72 |
training_args = TrainingArguments(
|
73 |
-
output_dir='./results',
|
74 |
-
num_train_epochs=
|
75 |
-
per_device_train_batch_size=2,
|
76 |
-
gradient_accumulation_steps=2,
|
77 |
-
learning_rate=
|
78 |
-
save_steps=500,
|
79 |
-
save_total_limit=2,
|
80 |
-
logging_steps=50,
|
81 |
-
eval_strategy="steps",
|
82 |
-
eval_steps=100,
|
83 |
-
load_best_model_at_end=True,
|
84 |
-
metric_for_best_model="eval_loss",
|
85 |
-
greater_is_better=False,
|
86 |
-
gradient_checkpointing=True,
|
87 |
-
max_grad_norm=1.0,
|
88 |
)
|
89 |
|
90 |
# Step 7: Initialize Trainer
|
91 |
-
# The Trainer handles the fine-tuning process
|
92 |
print("Initializing Trainer...")
|
93 |
trainer = Trainer(
|
94 |
model=model,
|
@@ -99,11 +110,13 @@ trainer = Trainer(
|
|
99 |
|
100 |
# Step 8: Train the model
|
101 |
print("Starting training...")
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
104 |
|
105 |
# Step 9: Plot training and validation loss
|
106 |
-
# This helps students visualize model performance
|
107 |
print("Generating training and validation loss plot...")
|
108 |
logs = trainer.state.log_history
|
109 |
steps = [log['step'] for log in logs if 'loss' in log or 'eval_loss' in log]
|
|
|
8 |
import matplotlib.pyplot as plt
|
9 |
|
10 |
# Step 1: Log in to Hugging Face
|
11 |
+
# Students: Replace with your actual Hugging Face token from https://huggingface.co/settings/tokens
|
12 |
+
hf_token = "YOUR_HUGGING_FACE_TOKEN" #Replace your YOUR_HUGGING_FACE_TOKEN here
|
13 |
+
if not hf_token or hf_token == "YOUR_HUGGING_FACE_TOKEN": # Don't replace here
|
14 |
+
raise ValueError("Please replace 'YOUR_HUGGING_FACE_TOKEN' with your actual Hugging Face token")
|
15 |
+
try:
|
16 |
+
login(token=hf_token)
|
17 |
+
print("Logged in to Hugging Face successfully")
|
18 |
+
except Exception as e:
|
19 |
+
raise ValueError(f"Failed to log in to Hugging Face: {str(e)}")
|
20 |
|
21 |
# Step 2: Load and convert dataset
|
22 |
+
# Students: Replace with your dataset file name (CSV or JSON)
|
23 |
+
dataset_name = "dataset.json" # Change to "dataset.csv" if using CSV
|
24 |
dataset_path = dataset_name
|
25 |
+
if not os.path.exists(dataset_path):
|
26 |
+
raise FileNotFoundError(f"Dataset file '{dataset_path}' not found in the project folder")
|
27 |
if dataset_name.endswith('.csv'):
|
28 |
+
# Convert CSV to JSON for consistency
|
29 |
print(f"Converting {dataset_name} to JSON format...")
|
30 |
+
try:
|
31 |
+
df = pd.read_csv(dataset_path)
|
32 |
+
df.to_json('dataset.json', orient='records', lines=True)
|
33 |
+
dataset_path = 'dataset.json'
|
34 |
+
except Exception as e:
|
35 |
+
raise ValueError(f"Failed to convert CSV to JSON: {str(e)}")
|
36 |
|
37 |
# Load dataset
|
38 |
print(f"Loading dataset from {dataset_path}...")
|
39 |
+
try:
|
40 |
+
dataset = load_dataset('json', data_files=dataset_path)
|
41 |
+
except Exception as e:
|
42 |
+
raise ValueError(f"Failed to load dataset: {str(e)}")
|
43 |
# Step 3: Split dataset into training and validation
|
44 |
# 85% training, 15% validation to monitor model performance
|
45 |
print("Splitting dataset into training and validation sets...")
|
|
|
49 |
|
50 |
# Step 4: Download and load tokenizer and model
|
51 |
print("Downloading T5-small model and tokenizer...")
|
52 |
+
try:
|
53 |
+
tokenizer = T5Tokenizer.from_pretrained('t5-small')
|
54 |
+
model = T5ForConditionalGeneration.from_pretrained('t5-small')
|
55 |
+
model.save_pretrained('./t5_small_weights') # Save model weights locally for fine-tuning
|
56 |
+
tokenizer.save_pretrained('./t5_small_weights')
|
57 |
+
print("Model and tokenizer saved to './t5_small_weights'")
|
58 |
+
except Exception as e:
|
59 |
+
raise ValueError(f"Failed to download or save model/tokenizer: {str(e)}")
|
60 |
|
61 |
# Step 5: Preprocess dataset
|
62 |
# This ensures the input questions and answers are properly tokenized for T5
|
|
|
64 |
# Add "question:" prefix to inputs and clean whitespace
|
65 |
inputs = ["question: " + q.strip() for q in examples['input']]
|
66 |
targets = [r.strip() for r in examples['response']]
|
67 |
+
# Tokenize inputs (questions)
|
68 |
model_inputs = tokenizer(inputs, max_length=128, truncation=True, padding='max_length')
|
69 |
# Tokenize labels (answers)
|
70 |
labels = tokenizer(targets, max_length=64, truncation=True, padding='max_length')
|
|
|
71 |
model_inputs['labels'] = [
|
72 |
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels['input_ids']
|
73 |
]
|
74 |
return model_inputs
|
75 |
|
|
|
76 |
print("Preprocessing datasets...")
|
77 |
+
try:
|
78 |
+
processed_train_dataset = train_dataset.map(preprocess_data, batched=True, remove_columns=['input', 'response'])
|
79 |
+
processed_eval_dataset = eval_dataset.map(preprocess_data, batched=True, remove_columns=['input', 'response'])
|
80 |
+
except Exception as e:
|
81 |
+
raise ValueError(f"Failed to preprocess dataset: {str(e)}")
|
82 |
|
83 |
# Step 6: Define training arguments
|
|
|
84 |
training_args = TrainingArguments(
|
85 |
+
output_dir='./results',
|
86 |
+
num_train_epochs=15, # Increased for better convergence
|
87 |
+
per_device_train_batch_size=2,
|
88 |
+
gradient_accumulation_steps=2,
|
89 |
+
learning_rate=5e-4, # Increased for faster learning
|
90 |
+
save_steps=500,
|
91 |
+
save_total_limit=2,
|
92 |
+
logging_steps=50,
|
93 |
+
eval_strategy="steps",
|
94 |
+
eval_steps=100,
|
95 |
+
load_best_model_at_end=True,
|
96 |
+
metric_for_best_model="eval_loss",
|
97 |
+
greater_is_better=False,
|
98 |
+
gradient_checkpointing=True,
|
99 |
+
max_grad_norm=1.0,
|
100 |
)
|
101 |
|
102 |
# Step 7: Initialize Trainer
|
|
|
103 |
print("Initializing Trainer...")
|
104 |
trainer = Trainer(
|
105 |
model=model,
|
|
|
110 |
|
111 |
# Step 8: Train the model
|
112 |
print("Starting training...")
|
113 |
+
try:
|
114 |
+
trainer.train()
|
115 |
+
print("Training finished.")
|
116 |
+
except Exception as e:
|
117 |
+
raise ValueError(f"Training failed: {str(e)}")
|
118 |
|
119 |
# Step 9: Plot training and validation loss
|
|
|
120 |
print("Generating training and validation loss plot...")
|
121 |
logs = trainer.state.log_history
|
122 |
steps = [log['step'] for log in logs if 'loss' in log or 'eval_loss' in log]
|