Commit
·
b503cd1
1
Parent(s):
a80753c
Upload CodifyForCausalLM
Browse files- config.json +6 -1
- modeling_codify.py +773 -0
- pytorch_model.bin +2 -2
config.json
CHANGED
|
@@ -15,6 +15,9 @@
|
|
| 15 |
"type": "flash",
|
| 16 |
"use_rotary_emb": null
|
| 17 |
},
|
|
|
|
|
|
|
|
|
|
| 18 |
"attn_a_reach": 2048,
|
| 19 |
"attn_b_reach": 2048,
|
| 20 |
"attn_heads": 32,
|
|
@@ -24,7 +27,8 @@
|
|
| 24 |
],
|
| 25 |
"attn_sparse_layout_seq": null,
|
| 26 |
"auto_map": {
|
| 27 |
-
"AutoConfig": "configuration_codify.CodifyConfig"
|
|
|
|
| 28 |
},
|
| 29 |
"backcheck_pw": "none",
|
| 30 |
"backcheck_sa": "none",
|
|
@@ -44,6 +48,7 @@
|
|
| 44 |
"posemb": false,
|
| 45 |
"rescale_embeddings": false,
|
| 46 |
"tie_word_embeddings": false,
|
|
|
|
| 47 |
"transformers_version": "4.24.0",
|
| 48 |
"tune": [
|
| 49 |
3,
|
|
|
|
| 15 |
"type": "flash",
|
| 16 |
"use_rotary_emb": null
|
| 17 |
},
|
| 18 |
+
"architectures": [
|
| 19 |
+
"CodifyForCausalLM"
|
| 20 |
+
],
|
| 21 |
"attn_a_reach": 2048,
|
| 22 |
"attn_b_reach": 2048,
|
| 23 |
"attn_heads": 32,
|
|
|
|
| 27 |
],
|
| 28 |
"attn_sparse_layout_seq": null,
|
| 29 |
"auto_map": {
|
| 30 |
+
"AutoConfig": "configuration_codify.CodifyConfig",
|
| 31 |
+
"AutoModel": "modeling_codify.CodifyForCausalLM"
|
| 32 |
},
|
| 33 |
"backcheck_pw": "none",
|
| 34 |
"backcheck_sa": "none",
|
|
|
|
| 48 |
"posemb": false,
|
| 49 |
"rescale_embeddings": false,
|
| 50 |
"tie_word_embeddings": false,
|
| 51 |
+
"torch_dtype": "float32",
|
| 52 |
"transformers_version": "4.24.0",
|
| 53 |
"tune": [
|
| 54 |
3,
|
modeling_codify.py
ADDED
|
@@ -0,0 +1,773 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import warnings
|
| 3 |
+
from typing import Optional, Tuple, Union
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.utils.checkpoint
|
| 7 |
+
from torch import nn
|
| 8 |
+
from torch.nn import CrossEntropyLoss, LayerNorm
|
| 9 |
+
from torch.nn import functional as F
|
| 10 |
+
from transformers.file_utils import add_code_sample_docstrings, add_start_docstrings, \
|
| 11 |
+
add_start_docstrings_to_model_forward
|
| 12 |
+
from transformers.modeling_outputs import (
|
| 13 |
+
BaseModelOutputWithPast,
|
| 14 |
+
CausalLMOutputWithPast,
|
| 15 |
+
)
|
| 16 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 17 |
+
from transformers.utils import logging
|
| 18 |
+
|
| 19 |
+
from .configuration_codify import CodifyConfig
|
| 20 |
+
|
| 21 |
+
logger = logging.get_logger(__name__)
|
| 22 |
+
|
| 23 |
+
_CHECKPOINT_FOR_DOC = "smallcloudai/codify_medium_multi"
|
| 24 |
+
_CONFIG_FOR_DOC = "CodifyConfig"
|
| 25 |
+
_TOKENIZER_FOR_DOC = "CodifyTokenizerFast"
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
CODIFY_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
| 29 |
+
"smallcloudai/codify_medium_multi",
|
| 30 |
+
"smallcloudai/codify_3b_multi"
|
| 31 |
+
]
|
| 32 |
+
|
| 33 |
+
def _make_causal_mask(
|
| 34 |
+
input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
|
| 35 |
+
) -> torch.BoolTensor:
|
| 36 |
+
"""
|
| 37 |
+
Make causal mask used for self-attention.
|
| 38 |
+
"""
|
| 39 |
+
batch_size, target_length = input_ids_shape
|
| 40 |
+
mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device)
|
| 41 |
+
# ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround
|
| 42 |
+
seq_ids = torch.arange(target_length, device=device)
|
| 43 |
+
mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :]
|
| 44 |
+
|
| 45 |
+
if past_key_values_length > 0:
|
| 46 |
+
mask[:, :past_key_values_length] = False
|
| 47 |
+
|
| 48 |
+
expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length)
|
| 49 |
+
return expanded_mask
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
|
| 53 |
+
"""
|
| 54 |
+
Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`.
|
| 55 |
+
"""
|
| 56 |
+
batch_size, src_length = mask.shape
|
| 57 |
+
tgt_length = tgt_length if tgt_length is not None else src_length
|
| 58 |
+
|
| 59 |
+
expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
|
| 60 |
+
return expanded_mask.expand(batch_size, 1, tgt_length, src_length)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
|
| 64 |
+
"""
|
| 65 |
+
Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it
|
| 66 |
+
relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value
|
| 67 |
+
`softmax(l+a) = softmax(l)`. Based on
|
| 68 |
+
https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742
|
| 69 |
+
TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly.
|
| 70 |
+
|
| 71 |
+
Args:
|
| 72 |
+
Returns tensor shaped (batch_size * num_heads, 1, max_seq_len)
|
| 73 |
+
attention_mask (`torch.Tensor`):
|
| 74 |
+
Token-wise attention mask, this should be of shape (batch_size, max_seq_len).
|
| 75 |
+
num_heads (`int`, *required*):
|
| 76 |
+
number of heads
|
| 77 |
+
dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`):
|
| 78 |
+
dtype of the output tensor
|
| 79 |
+
"""
|
| 80 |
+
batch_size, seq_length = attention_mask.shape
|
| 81 |
+
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
|
| 82 |
+
base = torch.tensor(
|
| 83 |
+
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
|
| 84 |
+
)
|
| 85 |
+
powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
|
| 86 |
+
slopes = torch.pow(base, powers)
|
| 87 |
+
|
| 88 |
+
if closest_power_of_2 != num_heads:
|
| 89 |
+
extra_base = torch.tensor(
|
| 90 |
+
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
|
| 91 |
+
)
|
| 92 |
+
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
|
| 93 |
+
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32)
|
| 94 |
+
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
| 95 |
+
|
| 96 |
+
# Note: alibi will added to the attention bias that will be applied to the query, key product of attention
|
| 97 |
+
# => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
|
| 98 |
+
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
|
| 99 |
+
# => the query_length dimension will then be broadcasted correctly
|
| 100 |
+
# This is more or less identical to T5's relative position bias:
|
| 101 |
+
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
|
| 102 |
+
arange_tensor = ((attention_mask.cumsum(dim=-1)) * attention_mask)[:, None, :]
|
| 103 |
+
alibi = slopes[..., None] * arange_tensor
|
| 104 |
+
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def codify_gelu_forward(x: torch.Tensor) -> torch.Tensor:
|
| 109 |
+
"""
|
| 110 |
+
Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to
|
| 111 |
+
make the model jitable.
|
| 112 |
+
|
| 113 |
+
Args:
|
| 114 |
+
x (`torch.tensor`, *required*):
|
| 115 |
+
input hidden states
|
| 116 |
+
"""
|
| 117 |
+
return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def codify_gelu_back(g: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
|
| 121 |
+
"""
|
| 122 |
+
gradient of tanh approximation of gelu gradient of actual gelu is: 0.5 * (1. + torch.erf(x * 0.70710678)) +
|
| 123 |
+
0.3989423 * x * torch.exp(-0.5 * x * x)
|
| 124 |
+
|
| 125 |
+
Args:
|
| 126 |
+
g (`torch.tensor`, *required*):
|
| 127 |
+
gradient output tensor
|
| 128 |
+
x (`torch.tensor`, *required*):
|
| 129 |
+
input tensor
|
| 130 |
+
"""
|
| 131 |
+
x = x[0] # x is a tuple of 1 element, needs to unpack it first
|
| 132 |
+
tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
|
| 133 |
+
# sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
|
| 134 |
+
ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out)
|
| 135 |
+
return ff * g
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
class GeLUFunction(torch.autograd.Function):
|
| 139 |
+
@staticmethod
|
| 140 |
+
def forward(ctx, input: torch.Tensor) -> torch.Tensor:
|
| 141 |
+
ctx.save_for_backward(input)
|
| 142 |
+
return codify_gelu_forward(input)
|
| 143 |
+
|
| 144 |
+
@staticmethod
|
| 145 |
+
def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor:
|
| 146 |
+
input = ctx.saved_tensors
|
| 147 |
+
tmp = codify_gelu_back(grad_output, input)
|
| 148 |
+
return tmp
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
class CodifyGelu(nn.Module):
|
| 152 |
+
def __init__(self):
|
| 153 |
+
super().__init__()
|
| 154 |
+
|
| 155 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 156 |
+
if self.training:
|
| 157 |
+
return GeLUFunction.apply(x)
|
| 158 |
+
else:
|
| 159 |
+
return codify_gelu_forward(x)
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
class CodifyAttention(nn.Module):
|
| 163 |
+
def __init__(self, config: CodifyConfig):
|
| 164 |
+
super().__init__()
|
| 165 |
+
|
| 166 |
+
self.hidden_size = config.hidden_size
|
| 167 |
+
self.num_heads = config.num_attention_heads
|
| 168 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 169 |
+
self.split_size = self.hidden_size
|
| 170 |
+
|
| 171 |
+
if self.head_dim * self.num_heads != self.hidden_size:
|
| 172 |
+
raise ValueError(
|
| 173 |
+
f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
|
| 174 |
+
f" {self.num_heads})."
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
# Layer-wise attention scaling
|
| 178 |
+
# 8.0 = self.head_dim
|
| 179 |
+
self.inv_norm_factor = 8.0 / self.head_dim
|
| 180 |
+
self.beta = 1.0
|
| 181 |
+
|
| 182 |
+
self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=True)
|
| 183 |
+
self.dense = nn.Linear(self.hidden_size, self.hidden_size)
|
| 184 |
+
|
| 185 |
+
def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 186 |
+
"""
|
| 187 |
+
Split the last dimension into (num_heads, head_dim) without making any copies, results share same memory
|
| 188 |
+
storage as `fused_qkv`
|
| 189 |
+
|
| 190 |
+
Args:
|
| 191 |
+
fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim]
|
| 192 |
+
|
| 193 |
+
Returns:
|
| 194 |
+
query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim]
|
| 195 |
+
value: [batch_size, seq_length, num_heads, head_dim]
|
| 196 |
+
"""
|
| 197 |
+
batch_size, seq_length, _ = fused_qkv.shape
|
| 198 |
+
q, k, v = fused_qkv.chunk(3, dim=-1)
|
| 199 |
+
return q.view(batch_size, seq_length, self.num_heads, self.head_dim),\
|
| 200 |
+
k.view(batch_size, seq_length, self.num_heads, self.head_dim),\
|
| 201 |
+
v.view(batch_size, seq_length, self.num_heads, self.head_dim)
|
| 202 |
+
|
| 203 |
+
def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
|
| 204 |
+
"""
|
| 205 |
+
Merge heads together over the last dimenstion
|
| 206 |
+
|
| 207 |
+
Args:
|
| 208 |
+
x: (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim]
|
| 209 |
+
|
| 210 |
+
Returns:
|
| 211 |
+
torch.tensor: [batch_size, seq_length, num_heads * head_dim]
|
| 212 |
+
"""
|
| 213 |
+
# What we want to achieve is:
|
| 214 |
+
# batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim
|
| 215 |
+
batch_size_and_num_heads, seq_length, _ = x.shape
|
| 216 |
+
batch_size = batch_size_and_num_heads // self.num_heads
|
| 217 |
+
|
| 218 |
+
# First view to decompose the batch size
|
| 219 |
+
# batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim
|
| 220 |
+
x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)
|
| 221 |
+
|
| 222 |
+
# batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim
|
| 223 |
+
x = x.permute(0, 2, 1, 3)
|
| 224 |
+
|
| 225 |
+
# batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim
|
| 226 |
+
return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)
|
| 227 |
+
|
| 228 |
+
def forward(
|
| 229 |
+
self,
|
| 230 |
+
hidden_states: torch.Tensor,
|
| 231 |
+
alibi: torch.Tensor,
|
| 232 |
+
attention_mask: torch.Tensor,
|
| 233 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 234 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 235 |
+
use_cache: bool = False,
|
| 236 |
+
output_attentions: bool = False,
|
| 237 |
+
):
|
| 238 |
+
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
|
| 239 |
+
|
| 240 |
+
# 3 x [batch_size, seq_length, num_heads, head_dim]
|
| 241 |
+
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
|
| 242 |
+
|
| 243 |
+
batch_size, q_length, _, _ = query_layer.shape
|
| 244 |
+
|
| 245 |
+
query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
|
| 246 |
+
key_layer = key_layer.permute(0, 2, 3, 1).reshape(batch_size * self.num_heads, self.head_dim, q_length)
|
| 247 |
+
value_layer = value_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
|
| 248 |
+
if layer_past is not None:
|
| 249 |
+
past_key, past_value = layer_past
|
| 250 |
+
# concatenate along seq_length dimension:
|
| 251 |
+
# - key: [batch_size * self.num_heads, head_dim, kv_length]
|
| 252 |
+
# - value: [batch_size * self.num_heads, kv_length, head_dim]
|
| 253 |
+
key_layer = torch.cat((past_key, key_layer), dim=2)
|
| 254 |
+
value_layer = torch.cat((past_value, value_layer), dim=1)
|
| 255 |
+
|
| 256 |
+
_, _, kv_length = key_layer.shape
|
| 257 |
+
|
| 258 |
+
if use_cache is True:
|
| 259 |
+
present = (key_layer, value_layer)
|
| 260 |
+
else:
|
| 261 |
+
present = None
|
| 262 |
+
|
| 263 |
+
# [batch_size * num_heads, q_length, kv_length]
|
| 264 |
+
# we use `torch.Tensor.baddbmm` instead of `torch.baddbmm` as the latter isn't supported by TorchScript v1.11
|
| 265 |
+
matmul_result = alibi.baddbmm(
|
| 266 |
+
batch1=query_layer,
|
| 267 |
+
batch2=key_layer,
|
| 268 |
+
beta=self.beta,
|
| 269 |
+
alpha=self.inv_norm_factor,
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
# change view to [batch_size, num_heads, q_length, kv_length]
|
| 273 |
+
attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length)
|
| 274 |
+
|
| 275 |
+
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
|
| 276 |
+
input_dtype = attention_scores.dtype
|
| 277 |
+
# `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
|
| 278 |
+
if input_dtype == torch.float16:
|
| 279 |
+
attention_scores = attention_scores.to(torch.float)
|
| 280 |
+
attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min)
|
| 281 |
+
attention_probs = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(input_dtype)
|
| 282 |
+
|
| 283 |
+
if head_mask is not None:
|
| 284 |
+
attention_probs = attention_probs * head_mask
|
| 285 |
+
|
| 286 |
+
# change view [batch_size x num_heads, q_length, kv_length]
|
| 287 |
+
attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, kv_length)
|
| 288 |
+
|
| 289 |
+
# matmul: [batch_size * num_heads, q_length, head_dim]
|
| 290 |
+
context_layer = torch.bmm(attention_probs_reshaped, value_layer)
|
| 291 |
+
|
| 292 |
+
# change view [batch_size, num_heads, q_length, head_dim]
|
| 293 |
+
context_layer = self._merge_heads(context_layer)
|
| 294 |
+
|
| 295 |
+
output_tensor = self.dense(context_layer)
|
| 296 |
+
outputs = (output_tensor, present)
|
| 297 |
+
if output_attentions:
|
| 298 |
+
outputs += (attention_probs,)
|
| 299 |
+
|
| 300 |
+
return outputs
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
class CodifyMLP(nn.Module):
|
| 304 |
+
def __init__(self, config: CodifyConfig):
|
| 305 |
+
super().__init__()
|
| 306 |
+
hidden_size = config.hidden_size
|
| 307 |
+
self.dense_h_to_4h = nn.Linear(hidden_size, config.mlp_mult * hidden_size)
|
| 308 |
+
self.gelu_impl = CodifyGelu()
|
| 309 |
+
self.dense_4h_to_h = nn.Linear(config.mlp_mult * hidden_size, hidden_size)
|
| 310 |
+
|
| 311 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 312 |
+
hidden_states = self.gelu_impl(self.dense_h_to_4h(hidden_states))
|
| 313 |
+
output = self.dense_4h_to_h(hidden_states)
|
| 314 |
+
return output
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
class CodifyBlock(nn.Module):
|
| 318 |
+
def __init__(self, config: CodifyConfig):
|
| 319 |
+
super().__init__()
|
| 320 |
+
hidden_size = config.hidden_size
|
| 321 |
+
|
| 322 |
+
self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 323 |
+
self.num_heads = config.num_attention_heads
|
| 324 |
+
self.self_attention = CodifyAttention(config)
|
| 325 |
+
self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 326 |
+
self.mlp = CodifyMLP(config)
|
| 327 |
+
|
| 328 |
+
def forward(
|
| 329 |
+
self,
|
| 330 |
+
hidden_states: torch.Tensor,
|
| 331 |
+
alibi: torch.Tensor,
|
| 332 |
+
attention_mask: torch.Tensor,
|
| 333 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 334 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 335 |
+
use_cache: bool = False,
|
| 336 |
+
output_attentions: bool = False,
|
| 337 |
+
):
|
| 338 |
+
# hidden_states: [batch_size, seq_length, hidden_size]
|
| 339 |
+
|
| 340 |
+
# Layer norm at the beginning of the transformer layer.
|
| 341 |
+
layernorm_output = self.input_layernorm(hidden_states)
|
| 342 |
+
|
| 343 |
+
# Self attention.
|
| 344 |
+
attn_outputs = self.self_attention(
|
| 345 |
+
layernorm_output,
|
| 346 |
+
layer_past=layer_past,
|
| 347 |
+
attention_mask=attention_mask,
|
| 348 |
+
alibi=alibi,
|
| 349 |
+
head_mask=head_mask,
|
| 350 |
+
use_cache=use_cache,
|
| 351 |
+
output_attentions=output_attentions,
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
attention_output = attn_outputs[0]
|
| 355 |
+
outputs = attn_outputs[1:]
|
| 356 |
+
|
| 357 |
+
attention_mix = attention_output + hidden_states
|
| 358 |
+
layernorm_output = self.post_attention_layernorm(attention_mix)
|
| 359 |
+
|
| 360 |
+
# MLP.
|
| 361 |
+
output = self.mlp(layernorm_output)
|
| 362 |
+
output = output + attention_output + hidden_states
|
| 363 |
+
|
| 364 |
+
if use_cache:
|
| 365 |
+
outputs = (output,) + outputs
|
| 366 |
+
else:
|
| 367 |
+
outputs = (output,) + outputs[1:]
|
| 368 |
+
|
| 369 |
+
return outputs # hidden_states, present, attentions
|
| 370 |
+
|
| 371 |
+
class CodifyPreTrainedModel(PreTrainedModel):
|
| 372 |
+
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
|
| 373 |
+
"""
|
| 374 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 375 |
+
models.
|
| 376 |
+
"""
|
| 377 |
+
|
| 378 |
+
config_class = CodifyConfig
|
| 379 |
+
base_model_prefix = "transformer"
|
| 380 |
+
supports_gradient_checkpointing = True
|
| 381 |
+
_no_split_modules = ["CodifyBlock"]
|
| 382 |
+
|
| 383 |
+
def __init__(self, *inputs, **kwargs):
|
| 384 |
+
super().__init__(*inputs, **kwargs)
|
| 385 |
+
|
| 386 |
+
def _init_weights(self, module: nn.Module):
|
| 387 |
+
"""Initialize the weights."""
|
| 388 |
+
if isinstance(module, nn.Linear):
|
| 389 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 390 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 391 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 392 |
+
if module.bias is not None:
|
| 393 |
+
module.bias.data.zero_()
|
| 394 |
+
elif isinstance(module, nn.Embedding):
|
| 395 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 396 |
+
if module.padding_idx is not None:
|
| 397 |
+
module.weight.data[module.padding_idx].zero_()
|
| 398 |
+
elif isinstance(module, LayerNorm):
|
| 399 |
+
module.bias.data.zero_()
|
| 400 |
+
module.weight.data.fill_(1.0)
|
| 401 |
+
|
| 402 |
+
def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False):
|
| 403 |
+
if isinstance(module, CodifyModel):
|
| 404 |
+
module.gradient_checkpointing = value
|
| 405 |
+
|
| 406 |
+
@staticmethod
|
| 407 |
+
def _convert_to_standard_cache(
|
| 408 |
+
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int
|
| 409 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
| 410 |
+
"""
|
| 411 |
+
Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size,
|
| 412 |
+
num_heads, ...]))
|
| 413 |
+
"""
|
| 414 |
+
batch_size_times_num_heads, head_dim, seq_length = past_key_value[0][0].shape
|
| 415 |
+
num_heads = batch_size_times_num_heads // batch_size
|
| 416 |
+
# key: [batch_size * num_heads, head_dim, seq_length] -> [batch_size, num_heads, head_dim, seq_length]
|
| 417 |
+
# value: [batch_size * num_heads, seq_length, head_dim] -> [batch_size, num_heads, seq_length, head_dim]
|
| 418 |
+
return tuple(
|
| 419 |
+
(
|
| 420 |
+
layer_past[0].view(batch_size, num_heads, head_dim, seq_length),
|
| 421 |
+
layer_past[1].view(batch_size, num_heads, seq_length, head_dim),
|
| 422 |
+
)
|
| 423 |
+
for layer_past in past_key_value
|
| 424 |
+
)
|
| 425 |
+
|
| 426 |
+
@staticmethod
|
| 427 |
+
def _convert_to_codify_cache(
|
| 428 |
+
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]]
|
| 429 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
| 430 |
+
batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape
|
| 431 |
+
batch_size_times_num_heads = batch_size * num_heads
|
| 432 |
+
# key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length]
|
| 433 |
+
# value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim]
|
| 434 |
+
return tuple(
|
| 435 |
+
(
|
| 436 |
+
layer_past[0].view(batch_size_times_num_heads, head_dim, seq_length),
|
| 437 |
+
layer_past[1].view(batch_size_times_num_heads, seq_length, head_dim),
|
| 438 |
+
)
|
| 439 |
+
for layer_past in past_key_value
|
| 440 |
+
)
|
| 441 |
+
|
| 442 |
+
class CodifyModel(CodifyPreTrainedModel):
|
| 443 |
+
def __init__(self, config: CodifyConfig):
|
| 444 |
+
super().__init__(config)
|
| 445 |
+
|
| 446 |
+
self.embed_dim = config.hidden_size
|
| 447 |
+
self.num_heads = config.num_attention_heads
|
| 448 |
+
|
| 449 |
+
# Embedding
|
| 450 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
|
| 451 |
+
|
| 452 |
+
# Transformer blocks
|
| 453 |
+
self.h = nn.ModuleList([CodifyBlock(config) for _ in range(config.num_hidden_layers)])
|
| 454 |
+
|
| 455 |
+
# Final Layer Norm
|
| 456 |
+
self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
| 457 |
+
|
| 458 |
+
self.gradient_checkpointing = False
|
| 459 |
+
|
| 460 |
+
# Initialize weights and apply final processing
|
| 461 |
+
self.post_init()
|
| 462 |
+
|
| 463 |
+
def get_input_embeddings(self):
|
| 464 |
+
return self.word_embeddings
|
| 465 |
+
|
| 466 |
+
def _prepare_attn_mask(
|
| 467 |
+
self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int
|
| 468 |
+
) -> torch.BoolTensor:
|
| 469 |
+
# create causal mask
|
| 470 |
+
# [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
|
| 471 |
+
combined_attention_mask = None
|
| 472 |
+
device = attention_mask.device
|
| 473 |
+
_, src_length = input_shape
|
| 474 |
+
|
| 475 |
+
if src_length > 1:
|
| 476 |
+
combined_attention_mask = _make_causal_mask(
|
| 477 |
+
input_shape, device=device, past_key_values_length=past_key_values_length
|
| 478 |
+
)
|
| 479 |
+
|
| 480 |
+
# [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
|
| 481 |
+
expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length)
|
| 482 |
+
combined_attention_mask = (
|
| 483 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
|
| 484 |
+
)
|
| 485 |
+
|
| 486 |
+
return combined_attention_mask
|
| 487 |
+
|
| 488 |
+
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
| 489 |
+
self.word_embeddings = new_embeddings
|
| 490 |
+
|
| 491 |
+
@add_code_sample_docstrings(
|
| 492 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
| 493 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 494 |
+
output_type=BaseModelOutputWithPast,
|
| 495 |
+
config_class=_CONFIG_FOR_DOC,
|
| 496 |
+
)
|
| 497 |
+
def forward(
|
| 498 |
+
self,
|
| 499 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 500 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
| 501 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 502 |
+
head_mask: Optional[torch.LongTensor] = None,
|
| 503 |
+
inputs_embeds: Optional[torch.LongTensor] = None,
|
| 504 |
+
use_cache: Optional[bool] = None,
|
| 505 |
+
output_attentions: Optional[bool] = None,
|
| 506 |
+
output_hidden_states: Optional[bool] = None,
|
| 507 |
+
return_dict: Optional[bool] = None,
|
| 508 |
+
**deprecated_arguments
|
| 509 |
+
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPast]:
|
| 510 |
+
if deprecated_arguments.pop("position_ids", False) is not False:
|
| 511 |
+
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
| 512 |
+
warnings.warn(
|
| 513 |
+
"`position_ids` have no functionality in Codify and will be removed in v5.0.0. You can safely ignore"
|
| 514 |
+
" passing `position_ids`.",
|
| 515 |
+
FutureWarning,
|
| 516 |
+
)
|
| 517 |
+
if len(deprecated_arguments) > 0:
|
| 518 |
+
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
| 519 |
+
|
| 520 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 521 |
+
output_hidden_states = (
|
| 522 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 523 |
+
)
|
| 524 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 525 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 526 |
+
|
| 527 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 528 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 529 |
+
elif input_ids is not None:
|
| 530 |
+
batch_size, seq_length = input_ids.shape
|
| 531 |
+
elif inputs_embeds is not None:
|
| 532 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
| 533 |
+
else:
|
| 534 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 535 |
+
|
| 536 |
+
if past_key_values is None:
|
| 537 |
+
past_key_values = tuple([None] * len(self.h))
|
| 538 |
+
|
| 539 |
+
# Prepare head mask if needed
|
| 540 |
+
# 1.0 in head_mask indicate we keep the head
|
| 541 |
+
# attention_probs has shape batch_size x num_heads x N x N
|
| 542 |
+
# head_mask has shape n_layer x batch x num_heads x N x N
|
| 543 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
| 544 |
+
|
| 545 |
+
if inputs_embeds is None:
|
| 546 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
| 547 |
+
|
| 548 |
+
hidden_states = inputs_embeds
|
| 549 |
+
|
| 550 |
+
presents = () if use_cache else None
|
| 551 |
+
all_self_attentions = () if output_attentions else None
|
| 552 |
+
all_hidden_states = () if output_hidden_states else None
|
| 553 |
+
|
| 554 |
+
# Compute alibi tensor: check build_alibi_tensor documentation
|
| 555 |
+
seq_length_with_past = seq_length
|
| 556 |
+
past_key_values_length = 0
|
| 557 |
+
if past_key_values[0] is not None:
|
| 558 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
| 559 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 560 |
+
if attention_mask is None:
|
| 561 |
+
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
|
| 562 |
+
else:
|
| 563 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
| 564 |
+
|
| 565 |
+
alibi = build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
|
| 566 |
+
|
| 567 |
+
causal_mask = self._prepare_attn_mask(
|
| 568 |
+
attention_mask,
|
| 569 |
+
input_shape=(batch_size, seq_length),
|
| 570 |
+
past_key_values_length=past_key_values_length,
|
| 571 |
+
)
|
| 572 |
+
|
| 573 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
| 574 |
+
|
| 575 |
+
if output_hidden_states:
|
| 576 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 577 |
+
|
| 578 |
+
if self.gradient_checkpointing and self.training:
|
| 579 |
+
|
| 580 |
+
if use_cache:
|
| 581 |
+
logger.warning(
|
| 582 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 583 |
+
)
|
| 584 |
+
use_cache = False
|
| 585 |
+
|
| 586 |
+
def create_custom_forward(module):
|
| 587 |
+
def custom_forward(*inputs):
|
| 588 |
+
# None for past_key_value
|
| 589 |
+
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
|
| 590 |
+
|
| 591 |
+
return custom_forward
|
| 592 |
+
|
| 593 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
| 594 |
+
create_custom_forward(block),
|
| 595 |
+
hidden_states,
|
| 596 |
+
alibi,
|
| 597 |
+
causal_mask,
|
| 598 |
+
head_mask[i],
|
| 599 |
+
)
|
| 600 |
+
else:
|
| 601 |
+
outputs = block(
|
| 602 |
+
hidden_states,
|
| 603 |
+
layer_past=layer_past,
|
| 604 |
+
attention_mask=causal_mask,
|
| 605 |
+
head_mask=head_mask[i],
|
| 606 |
+
use_cache=use_cache,
|
| 607 |
+
output_attentions=output_attentions,
|
| 608 |
+
alibi=alibi,
|
| 609 |
+
)
|
| 610 |
+
|
| 611 |
+
hidden_states = outputs[0]
|
| 612 |
+
if use_cache is True:
|
| 613 |
+
presents = presents + (outputs[1],)
|
| 614 |
+
|
| 615 |
+
if output_attentions:
|
| 616 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
| 617 |
+
|
| 618 |
+
# Add last hidden state
|
| 619 |
+
hidden_states = self.ln_f(hidden_states)
|
| 620 |
+
|
| 621 |
+
if output_hidden_states:
|
| 622 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 623 |
+
|
| 624 |
+
if not return_dict:
|
| 625 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
| 626 |
+
|
| 627 |
+
return BaseModelOutputWithPast(
|
| 628 |
+
last_hidden_state=hidden_states,
|
| 629 |
+
past_key_values=presents,
|
| 630 |
+
hidden_states=all_hidden_states,
|
| 631 |
+
attentions=all_self_attentions,
|
| 632 |
+
)
|
| 633 |
+
|
| 634 |
+
|
| 635 |
+
class CodifyForCausalLM(CodifyPreTrainedModel):
|
| 636 |
+
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
|
| 637 |
+
|
| 638 |
+
def __init__(self, config: CodifyConfig):
|
| 639 |
+
super().__init__(config)
|
| 640 |
+
self.transformer = CodifyModel(config)
|
| 641 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 642 |
+
|
| 643 |
+
# Initialize weights and apply final processing
|
| 644 |
+
self.post_init()
|
| 645 |
+
|
| 646 |
+
def get_output_embeddings(self):
|
| 647 |
+
return self.lm_head
|
| 648 |
+
|
| 649 |
+
def set_output_embeddings(self, new_embeddings: torch.Tensor):
|
| 650 |
+
self.lm_head = new_embeddings
|
| 651 |
+
|
| 652 |
+
def prepare_inputs_for_generation(
|
| 653 |
+
self,
|
| 654 |
+
input_ids: torch.LongTensor,
|
| 655 |
+
past: Optional[torch.Tensor] = None,
|
| 656 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 657 |
+
**kwargs
|
| 658 |
+
) -> dict:
|
| 659 |
+
# only last token for input_ids if past is not None
|
| 660 |
+
if past:
|
| 661 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
| 662 |
+
|
| 663 |
+
if past[0][0].shape[0] == input_ids.shape[0]:
|
| 664 |
+
past = self._convert_to_codify_cache(past)
|
| 665 |
+
|
| 666 |
+
return {
|
| 667 |
+
"input_ids": input_ids,
|
| 668 |
+
"past_key_values": past,
|
| 669 |
+
"use_cache": kwargs.get("use_cache"),
|
| 670 |
+
"attention_mask": attention_mask,
|
| 671 |
+
}
|
| 672 |
+
|
| 673 |
+
@add_code_sample_docstrings(
|
| 674 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
| 675 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 676 |
+
output_type=CausalLMOutputWithPast,
|
| 677 |
+
config_class=_CONFIG_FOR_DOC,
|
| 678 |
+
)
|
| 679 |
+
def forward(
|
| 680 |
+
self,
|
| 681 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 682 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
| 683 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 684 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 685 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 686 |
+
labels: Optional[torch.Tensor] = None,
|
| 687 |
+
use_cache: Optional[bool] = None,
|
| 688 |
+
output_attentions: Optional[bool] = None,
|
| 689 |
+
output_hidden_states: Optional[bool] = None,
|
| 690 |
+
return_dict: Optional[bool] = None,
|
| 691 |
+
**deprecated_arguments
|
| 692 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithPast]:
|
| 693 |
+
r"""
|
| 694 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 695 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
| 696 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
| 697 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
| 698 |
+
"""
|
| 699 |
+
if deprecated_arguments.pop("position_ids", False) is not False:
|
| 700 |
+
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
| 701 |
+
warnings.warn(
|
| 702 |
+
"`position_ids` have no functionality in Codify and will be removed in v5.0.0. You can safely ignore"
|
| 703 |
+
" passing `position_ids`.",
|
| 704 |
+
FutureWarning,
|
| 705 |
+
)
|
| 706 |
+
if len(deprecated_arguments) > 0:
|
| 707 |
+
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
| 708 |
+
|
| 709 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 710 |
+
|
| 711 |
+
transformer_outputs = self.transformer(
|
| 712 |
+
input_ids,
|
| 713 |
+
past_key_values=past_key_values,
|
| 714 |
+
attention_mask=attention_mask,
|
| 715 |
+
head_mask=head_mask,
|
| 716 |
+
inputs_embeds=inputs_embeds,
|
| 717 |
+
use_cache=use_cache,
|
| 718 |
+
output_attentions=output_attentions,
|
| 719 |
+
output_hidden_states=output_hidden_states,
|
| 720 |
+
return_dict=return_dict,
|
| 721 |
+
)
|
| 722 |
+
hidden_states = transformer_outputs[0]
|
| 723 |
+
|
| 724 |
+
lm_logits = self.lm_head(hidden_states / 2.0)
|
| 725 |
+
|
| 726 |
+
loss = None
|
| 727 |
+
if labels is not None:
|
| 728 |
+
# Shift so that tokens < n predict n
|
| 729 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
| 730 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 731 |
+
batch_size, seq_length, vocab_size = shift_logits.shape
|
| 732 |
+
# Flatten the tokens
|
| 733 |
+
loss_fct = CrossEntropyLoss()
|
| 734 |
+
loss = loss_fct(
|
| 735 |
+
shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
|
| 736 |
+
)
|
| 737 |
+
|
| 738 |
+
if not return_dict:
|
| 739 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
| 740 |
+
return ((loss,) + output) if loss is not None else output
|
| 741 |
+
|
| 742 |
+
return CausalLMOutputWithPast(
|
| 743 |
+
loss=loss,
|
| 744 |
+
logits=lm_logits,
|
| 745 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 746 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 747 |
+
attentions=transformer_outputs.attentions,
|
| 748 |
+
)
|
| 749 |
+
|
| 750 |
+
def _reorder_cache(
|
| 751 |
+
self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
|
| 752 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
|
| 753 |
+
"""
|
| 754 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
| 755 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
| 756 |
+
beam_idx at every generation step.
|
| 757 |
+
|
| 758 |
+
Output shares the same memory storage as `past`.
|
| 759 |
+
"""
|
| 760 |
+
standardized_past = self._convert_to_standard_cache(past, batch_size=len(beam_idx))
|
| 761 |
+
|
| 762 |
+
# Get a copy of `beam_idx` on all the devices where we need those indices.
|
| 763 |
+
device_to_beam_idx = {
|
| 764 |
+
past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past
|
| 765 |
+
}
|
| 766 |
+
reordered_past = tuple(
|
| 767 |
+
(
|
| 768 |
+
layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
| 769 |
+
layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
| 770 |
+
)
|
| 771 |
+
for layer_past in standardized_past
|
| 772 |
+
)
|
| 773 |
+
return self._convert_to_codify_cache(reordered_past)
|
pytorch_model.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e7947369f9ccd5e089e37d3c3b8d026c4f00ee70b894fca56ce72bac27f635bd
|
| 3 |
+
size 1629628537
|