Add README file (#1)
Browse files- First commit of README file (4aefdb2df30a5e35c13e233decf29d0bf9208c3d)
README.md
CHANGED
|
@@ -1,3 +1,436 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- dataset_size:2438
|
| 8 |
+
- loss:MatryoshkaLoss
|
| 9 |
+
- loss:OnlineContrastiveLoss
|
| 10 |
+
base_model: Alibaba-NLP/gte-modernbert-base
|
| 11 |
+
|
| 12 |
+
pipeline_tag: sentence-similarity
|
| 13 |
+
library_name: sentence-transformers
|
| 14 |
+
metrics:
|
| 15 |
+
- cosine_accuracy
|
| 16 |
+
- cosine_accuracy_threshold
|
| 17 |
+
- cosine_f1
|
| 18 |
+
- cosine_f1_threshold
|
| 19 |
+
- cosine_precision
|
| 20 |
+
- cosine_recall
|
| 21 |
+
- cosine_ap
|
| 22 |
+
- cosine_mcc
|
| 23 |
+
model-index:
|
| 24 |
+
- name: SentenceTransformer based on Alibaba-NLP/gte-modernbert-base
|
| 25 |
+
results:
|
| 26 |
+
- task:
|
| 27 |
+
type: my-binary-classification
|
| 28 |
+
name: My Binary Classification
|
| 29 |
+
dataset:
|
| 30 |
+
name: Unknown
|
| 31 |
+
type: unknown
|
| 32 |
+
metrics:
|
| 33 |
+
- type: cosine_accuracy
|
| 34 |
+
value: 0.9159836065573771
|
| 35 |
+
name: Cosine Accuracy
|
| 36 |
+
- type: cosine_accuracy_threshold
|
| 37 |
+
value: 0.8090976476669312
|
| 38 |
+
name: Cosine Accuracy Threshold
|
| 39 |
+
- type: cosine_f1
|
| 40 |
+
value: 0.9216061185468452
|
| 41 |
+
name: Cosine F1
|
| 42 |
+
- type: cosine_f1_threshold
|
| 43 |
+
value: 0.8090976476669312
|
| 44 |
+
name: Cosine F1 Threshold
|
| 45 |
+
- type: cosine_precision
|
| 46 |
+
value: 0.9305019305019305
|
| 47 |
+
name: Cosine Precision
|
| 48 |
+
- type: cosine_recall
|
| 49 |
+
value: 0.9128787878787878
|
| 50 |
+
name: Cosine Recall
|
| 51 |
+
- type: cosine_ap
|
| 52 |
+
value: 0.974188222191262
|
| 53 |
+
name: Cosine Ap
|
| 54 |
+
- type: cosine_mcc
|
| 55 |
+
value: 0.8312925398469787
|
| 56 |
+
name: Cosine Mcc
|
| 57 |
+
---
|
| 58 |
+
|
| 59 |
+
# SentenceTransformer based on Alibaba-NLP/gte-modernbert-base
|
| 60 |
+
|
| 61 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 62 |
+
|
| 63 |
+
## Model Details
|
| 64 |
+
|
| 65 |
+
### Model Description
|
| 66 |
+
- **Model Type:** Sentence Transformer
|
| 67 |
+
- **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) <!-- at revision bc02f0a92d1b6dd82108036f6cb4b7b423fb7434 -->
|
| 68 |
+
- **Maximum Sequence Length:** 8192 tokens
|
| 69 |
+
- **Output Dimensionality:** 768 dimensions
|
| 70 |
+
- **Similarity Function:** Cosine Similarity
|
| 71 |
+
- **Training Dataset:**
|
| 72 |
+
- csv
|
| 73 |
+
<!-- - **Language:** Unknown -->
|
| 74 |
+
<!-- - **License:** Unknown -->
|
| 75 |
+
|
| 76 |
+
### Model Sources
|
| 77 |
+
|
| 78 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 79 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 80 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 81 |
+
|
| 82 |
+
### Full Model Architecture
|
| 83 |
+
|
| 84 |
+
```
|
| 85 |
+
SentenceTransformer(
|
| 86 |
+
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
|
| 87 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 88 |
+
)
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
## Usage
|
| 92 |
+
|
| 93 |
+
### Direct Usage (Sentence Transformers)
|
| 94 |
+
|
| 95 |
+
First install the Sentence Transformers library:
|
| 96 |
+
|
| 97 |
+
```bash
|
| 98 |
+
pip install -U sentence-transformers
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
Then you can load this model and run inference.
|
| 102 |
+
```python
|
| 103 |
+
from sentence_transformers import SentenceTransformer
|
| 104 |
+
|
| 105 |
+
# Download from the 🤗 Hub
|
| 106 |
+
model = SentenceTransformer("waris-gill/ModernBert-Medical-v1")
|
| 107 |
+
# Run inference
|
| 108 |
+
sentences = [
|
| 109 |
+
'My rheumatologist said \'if a patient has lupus then prednisone doesn\'t work." why is that?',
|
| 110 |
+
"I have lupus,my rheumatologist told me that prednisone doesn't work in my case. Could you educate me why? What are my chances? ",
|
| 111 |
+
'Hello doctor, my grandmother has 3rd degree bed sore. What can be done to help?',
|
| 112 |
+
]
|
| 113 |
+
embeddings = model.encode(sentences)
|
| 114 |
+
print(embeddings.shape)
|
| 115 |
+
# [3, 768]
|
| 116 |
+
|
| 117 |
+
# Get the similarity scores for the embeddings
|
| 118 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 119 |
+
print(similarities.shape)
|
| 120 |
+
# [3, 3]
|
| 121 |
+
```
|
| 122 |
+
|
| 123 |
+
<!--
|
| 124 |
+
### Direct Usage (Transformers)
|
| 125 |
+
|
| 126 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 127 |
+
|
| 128 |
+
</details>
|
| 129 |
+
-->
|
| 130 |
+
|
| 131 |
+
<!--
|
| 132 |
+
### Downstream Usage (Sentence Transformers)
|
| 133 |
+
|
| 134 |
+
You can finetune this model on your own dataset.
|
| 135 |
+
|
| 136 |
+
<details><summary>Click to expand</summary>
|
| 137 |
+
|
| 138 |
+
</details>
|
| 139 |
+
-->
|
| 140 |
+
|
| 141 |
+
<!--
|
| 142 |
+
### Out-of-Scope Use
|
| 143 |
+
|
| 144 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 145 |
+
-->
|
| 146 |
+
|
| 147 |
+
## Evaluation
|
| 148 |
+
|
| 149 |
+
### Metrics
|
| 150 |
+
|
| 151 |
+
#### My Binary Classification
|
| 152 |
+
|
| 153 |
+
* Evaluated with <code>scache.train.MyBinaryClassificationEvaluator</code>
|
| 154 |
+
|
| 155 |
+
| Metric | Value |
|
| 156 |
+
|:--------------------------|:-----------|
|
| 157 |
+
| cosine_accuracy | 0.916 |
|
| 158 |
+
| cosine_accuracy_threshold | 0.8091 |
|
| 159 |
+
| cosine_f1 | 0.9216 |
|
| 160 |
+
| cosine_f1_threshold | 0.8091 |
|
| 161 |
+
| cosine_precision | 0.9305 |
|
| 162 |
+
| cosine_recall | 0.9129 |
|
| 163 |
+
| **cosine_ap** | **0.9742** |
|
| 164 |
+
| cosine_mcc | 0.8313 |
|
| 165 |
+
|
| 166 |
+
<!--
|
| 167 |
+
## Bias, Risks and Limitations
|
| 168 |
+
|
| 169 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 170 |
+
-->
|
| 171 |
+
|
| 172 |
+
<!--
|
| 173 |
+
### Recommendations
|
| 174 |
+
|
| 175 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 176 |
+
-->
|
| 177 |
+
|
| 178 |
+
## Training Details
|
| 179 |
+
|
| 180 |
+
### Training Dataset
|
| 181 |
+
|
| 182 |
+
#### csv
|
| 183 |
+
|
| 184 |
+
* Dataset: csv
|
| 185 |
+
* Size: 2,438 training samples
|
| 186 |
+
* Columns: <code>question_1</code>, <code>question_2</code>, and <code>label</code>
|
| 187 |
+
* Approximate statistics based on the first 1000 samples:
|
| 188 |
+
|
| 189 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
| 190 |
+
```json
|
| 191 |
+
{
|
| 192 |
+
"loss": "OnlineContrastiveLoss",
|
| 193 |
+
"matryoshka_dims": [
|
| 194 |
+
768,
|
| 195 |
+
512,
|
| 196 |
+
256,
|
| 197 |
+
128,
|
| 198 |
+
64
|
| 199 |
+
],
|
| 200 |
+
"matryoshka_weights": [
|
| 201 |
+
1,
|
| 202 |
+
1,
|
| 203 |
+
1,
|
| 204 |
+
1,
|
| 205 |
+
1
|
| 206 |
+
],
|
| 207 |
+
"n_dims_per_step": -1
|
| 208 |
+
}
|
| 209 |
+
```
|
| 210 |
+
|
| 211 |
+
### Evaluation Dataset
|
| 212 |
+
|
| 213 |
+
#### csv
|
| 214 |
+
|
| 215 |
+
* Dataset: csv
|
| 216 |
+
* Size: 2,438 evaluation samples
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
### Training Hyperparameters
|
| 220 |
+
#### Non-Default Hyperparameters
|
| 221 |
+
|
| 222 |
+
- `eval_strategy`: steps
|
| 223 |
+
- `per_device_train_batch_size`: 16
|
| 224 |
+
- `per_device_eval_batch_size`: 256
|
| 225 |
+
- `learning_rate`: 6.5383156211679e-05
|
| 226 |
+
- `max_grad_norm`: 0.5
|
| 227 |
+
- `num_train_epochs`: 1
|
| 228 |
+
- `lr_scheduler_type`: constant
|
| 229 |
+
- `load_best_model_at_end`: True
|
| 230 |
+
- `torch_compile`: True
|
| 231 |
+
- `torch_compile_backend`: inductor
|
| 232 |
+
- `batch_sampler`: no_duplicates
|
| 233 |
+
|
| 234 |
+
#### All Hyperparameters
|
| 235 |
+
<details><summary>Click to expand</summary>
|
| 236 |
+
|
| 237 |
+
- `overwrite_output_dir`: False
|
| 238 |
+
- `do_predict`: False
|
| 239 |
+
- `eval_strategy`: steps
|
| 240 |
+
- `prediction_loss_only`: True
|
| 241 |
+
- `per_device_train_batch_size`: 16
|
| 242 |
+
- `per_device_eval_batch_size`: 256
|
| 243 |
+
- `per_gpu_train_batch_size`: None
|
| 244 |
+
- `per_gpu_eval_batch_size`: None
|
| 245 |
+
- `gradient_accumulation_steps`: 1
|
| 246 |
+
- `eval_accumulation_steps`: None
|
| 247 |
+
- `torch_empty_cache_steps`: None
|
| 248 |
+
- `learning_rate`: 6.5383156211679e-05
|
| 249 |
+
- `weight_decay`: 0.0
|
| 250 |
+
- `adam_beta1`: 0.9
|
| 251 |
+
- `adam_beta2`: 0.999
|
| 252 |
+
- `adam_epsilon`: 1e-08
|
| 253 |
+
- `max_grad_norm`: 0.5
|
| 254 |
+
- `num_train_epochs`: 1
|
| 255 |
+
- `max_steps`: -1
|
| 256 |
+
- `lr_scheduler_type`: constant
|
| 257 |
+
- `lr_scheduler_kwargs`: {}
|
| 258 |
+
- `warmup_ratio`: 0.0
|
| 259 |
+
- `warmup_steps`: 0
|
| 260 |
+
- `log_level`: passive
|
| 261 |
+
- `log_level_replica`: warning
|
| 262 |
+
- `log_on_each_node`: True
|
| 263 |
+
- `logging_nan_inf_filter`: True
|
| 264 |
+
- `save_safetensors`: True
|
| 265 |
+
- `save_on_each_node`: False
|
| 266 |
+
- `save_only_model`: False
|
| 267 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 268 |
+
- `no_cuda`: False
|
| 269 |
+
- `use_cpu`: False
|
| 270 |
+
- `use_mps_device`: False
|
| 271 |
+
- `seed`: 42
|
| 272 |
+
- `data_seed`: None
|
| 273 |
+
- `jit_mode_eval`: False
|
| 274 |
+
- `use_ipex`: False
|
| 275 |
+
- `bf16`: False
|
| 276 |
+
- `fp16`: False
|
| 277 |
+
- `fp16_opt_level`: O1
|
| 278 |
+
- `half_precision_backend`: auto
|
| 279 |
+
- `bf16_full_eval`: False
|
| 280 |
+
- `fp16_full_eval`: False
|
| 281 |
+
- `tf32`: None
|
| 282 |
+
- `local_rank`: 0
|
| 283 |
+
- `ddp_backend`: None
|
| 284 |
+
- `tpu_num_cores`: None
|
| 285 |
+
- `tpu_metrics_debug`: False
|
| 286 |
+
- `debug`: []
|
| 287 |
+
- `dataloader_drop_last`: False
|
| 288 |
+
- `dataloader_num_workers`: 0
|
| 289 |
+
- `dataloader_prefetch_factor`: None
|
| 290 |
+
- `past_index`: -1
|
| 291 |
+
- `disable_tqdm`: False
|
| 292 |
+
- `remove_unused_columns`: True
|
| 293 |
+
- `label_names`: None
|
| 294 |
+
- `load_best_model_at_end`: True
|
| 295 |
+
- `ignore_data_skip`: False
|
| 296 |
+
- `fsdp`: []
|
| 297 |
+
- `fsdp_min_num_params`: 0
|
| 298 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 299 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 300 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 301 |
+
- `deepspeed`: None
|
| 302 |
+
- `label_smoothing_factor`: 0.0
|
| 303 |
+
- `optim`: adamw_torch
|
| 304 |
+
- `optim_args`: None
|
| 305 |
+
- `adafactor`: False
|
| 306 |
+
- `group_by_length`: False
|
| 307 |
+
- `length_column_name`: length
|
| 308 |
+
- `ddp_find_unused_parameters`: None
|
| 309 |
+
- `ddp_bucket_cap_mb`: None
|
| 310 |
+
- `ddp_broadcast_buffers`: False
|
| 311 |
+
- `dataloader_pin_memory`: True
|
| 312 |
+
- `dataloader_persistent_workers`: False
|
| 313 |
+
- `skip_memory_metrics`: True
|
| 314 |
+
- `use_legacy_prediction_loop`: False
|
| 315 |
+
- `push_to_hub`: False
|
| 316 |
+
- `resume_from_checkpoint`: None
|
| 317 |
+
- `hub_model_id`: None
|
| 318 |
+
- `hub_strategy`: every_save
|
| 319 |
+
- `hub_private_repo`: None
|
| 320 |
+
- `hub_always_push`: False
|
| 321 |
+
- `gradient_checkpointing`: False
|
| 322 |
+
- `gradient_checkpointing_kwargs`: None
|
| 323 |
+
- `include_inputs_for_metrics`: False
|
| 324 |
+
- `include_for_metrics`: []
|
| 325 |
+
- `eval_do_concat_batches`: True
|
| 326 |
+
- `fp16_backend`: auto
|
| 327 |
+
- `push_to_hub_model_id`: None
|
| 328 |
+
- `push_to_hub_organization`: None
|
| 329 |
+
- `mp_parameters`:
|
| 330 |
+
- `auto_find_batch_size`: False
|
| 331 |
+
- `full_determinism`: False
|
| 332 |
+
- `torchdynamo`: None
|
| 333 |
+
- `ray_scope`: last
|
| 334 |
+
- `ddp_timeout`: 1800
|
| 335 |
+
- `torch_compile`: True
|
| 336 |
+
- `torch_compile_backend`: inductor
|
| 337 |
+
- `torch_compile_mode`: None
|
| 338 |
+
- `dispatch_batches`: None
|
| 339 |
+
- `split_batches`: None
|
| 340 |
+
- `include_tokens_per_second`: False
|
| 341 |
+
- `include_num_input_tokens_seen`: False
|
| 342 |
+
- `neftune_noise_alpha`: None
|
| 343 |
+
- `optim_target_modules`: None
|
| 344 |
+
- `batch_eval_metrics`: False
|
| 345 |
+
- `eval_on_start`: False
|
| 346 |
+
- `use_liger_kernel`: False
|
| 347 |
+
- `eval_use_gather_object`: False
|
| 348 |
+
- `average_tokens_across_devices`: False
|
| 349 |
+
- `prompts`: None
|
| 350 |
+
- `batch_sampler`: no_duplicates
|
| 351 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 352 |
+
|
| 353 |
+
</details>
|
| 354 |
+
|
| 355 |
+
### Training Logs
|
| 356 |
+
| Epoch | Step | Training Loss | Validation Loss | cosine_ap |
|
| 357 |
+
|:----------:|:------:|:-------------:|:---------------:|:----------:|
|
| 358 |
+
| 0.0323 | 1 | 4.4977 | - | - |
|
| 359 |
+
| 0.0645 | 2 | 4.9952 | - | - |
|
| 360 |
+
| 0.0968 | 3 | 2.9984 | - | - |
|
| 361 |
+
| 0.1290 | 4 | 4.8052 | - | - |
|
| 362 |
+
| 0.1613 | 5 | 4.0031 | - | - |
|
| 363 |
+
| 0.1935 | 6 | 3.7682 | - | - |
|
| 364 |
+
| 0.2258 | 7 | 4.0361 | - | - |
|
| 365 |
+
| 0.2581 | 8 | 3.4003 | - | - |
|
| 366 |
+
| 0.2903 | 9 | 1.1674 | - | - |
|
| 367 |
+
| **0.3226** | **10** | **2.3826** | **14.3756** | **0.9742** |
|
| 368 |
+
| 0.3548 | 11 | 3.8777 | - | - |
|
| 369 |
+
| 0.3871 | 12 | 2.6367 | - | - |
|
| 370 |
+
| 0.4194 | 13 | 2.5763 | - | - |
|
| 371 |
+
| 0.4516 | 14 | 3.5591 | - | - |
|
| 372 |
+
| 0.4839 | 15 | 2.3568 | - | - |
|
| 373 |
+
| 0.5161 | 16 | 2.9432 | - | - |
|
| 374 |
+
| 0.5484 | 17 | 2.746 | - | - |
|
| 375 |
+
| 0.5806 | 18 | 3.647 | - | - |
|
| 376 |
+
| 0.6129 | 19 | 3.0907 | - | - |
|
| 377 |
+
| 0.6452 | 20 | 3.9776 | 12.4766 | 0.9771 |
|
| 378 |
+
| 0.6774 | 21 | 3.4131 | - | - |
|
| 379 |
+
| 0.7097 | 22 | 3.0084 | - | - |
|
| 380 |
+
| 0.7419 | 23 | 2.7182 | - | - |
|
| 381 |
+
| 0.7742 | 24 | 1.5211 | - | - |
|
| 382 |
+
| 0.8065 | 25 | 1.8332 | - | - |
|
| 383 |
+
| 0.8387 | 26 | 3.4883 | - | - |
|
| 384 |
+
| 0.8710 | 27 | 2.0585 | - | - |
|
| 385 |
+
| 0.9032 | 28 | 2.775 | - | - |
|
| 386 |
+
| 0.9355 | 29 | 2.9137 | - | - |
|
| 387 |
+
| 0.9677 | 30 | 2.4238 | 12.4805 | 0.9769 |
|
| 388 |
+
| 1.0 | 31 | 1.2115 | 14.3756 | 0.9742 |
|
| 389 |
+
|
| 390 |
+
* The bold row denotes the saved checkpoint.
|
| 391 |
+
|
| 392 |
+
### Framework Versions
|
| 393 |
+
- Python: 3.11.11
|
| 394 |
+
- Sentence Transformers: 3.4.1
|
| 395 |
+
- Transformers: 4.49.0
|
| 396 |
+
- PyTorch: 2.5.1+cu124
|
| 397 |
+
- Accelerate: 1.4.0
|
| 398 |
+
- Datasets: 3.3.2
|
| 399 |
+
- Tokenizers: 0.21.0
|
| 400 |
+
|
| 401 |
+
## Citation
|
| 402 |
+
|
| 403 |
+
### BibTeX
|
| 404 |
+
|
| 405 |
+
#### Sentence Transformers
|
| 406 |
+
```bibtex
|
| 407 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 408 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 409 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 410 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 411 |
+
month = "11",
|
| 412 |
+
year = "2019",
|
| 413 |
+
publisher = "Association for Computational Linguistics",
|
| 414 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 415 |
+
}
|
| 416 |
+
```
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
<!--
|
| 421 |
+
## Glossary
|
| 422 |
+
|
| 423 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 424 |
+
-->
|
| 425 |
+
|
| 426 |
+
<!--
|
| 427 |
+
## Model Card Authors
|
| 428 |
+
|
| 429 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 430 |
+
-->
|
| 431 |
+
|
| 432 |
+
<!--
|
| 433 |
+
## Model Card Contact
|
| 434 |
+
|
| 435 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 436 |
+
-->
|