File size: 2,281 Bytes
3fa50e4 51057f8 3fa50e4 5e2670a 7fd563c 52b2578 fbcf46b cfbf07e c4f8528 8a17538 c92298e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: mit
datasets:
- open-thoughts/OpenThoughts-114k
language:
- en
metrics:
- accuracy
base_model:
- deepseek-ai/DeepSeek-R1
new_version: deepseek-ai/DeepSeek-R1
pipeline_tag: question-answering
library_name: adapter-transformers
---
from transformers import pipeline, set_seed
generator = pipeline('text-generation', model='gpt2')
set_seed(42)
generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5)
input_text = "The future of AI is"
inputs = tokenizer(input_text, return_tensors="pt")
output = model.generate(**inputs, max_length=100)
print(tokenizer.decode(output[0], skip_special_tokens=True))
# Use a pipeline as a high-level helper
from transformers import pipeline
messages = [
{"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="deepseek-ai/DeepSeek-R1", trust_remote_code=True)
pipe(messages)
from adapters import AutoAdapterModel
model = AutoAdapterModel.from_pretrained("undefined")
model.load_adapter("rebekah0302/Glo-Bus", set_active=True)
from datasets import load_dataset
# Login using e.g. `huggingface-cli login` to access this dataset
ds = load_dataset("open-thoughts/OpenThoughts-114k", "default")
from adapters import AutoAdapterModel
model = AutoAdapterModel.from_pretrained("undefined")
model.load_adapter("rebekah0302/Glo-Bus", set_active=True)
from transformers import TrainingArguments, Trainer
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
num_train_epochs=3,
save_total_limit=2,
logging_dir="./logs",
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"],
)
trainer.train()
from huggingface_hub import notebook_login
notebook_login()
model.push_to_hub("your-huggingface-username/custom-gpt")
tokenizer.push_to_hub("your-huggingface-username/custom-gpt")
pip install gradio
import gradio as gr
from transformers import pipeline
generator = pipeline("text-generation", model="your-huggingface-username/custom-gpt")
def chatbot(prompt):
return generator(prompt, max_length=100)[0]["generated_text"]
iface = gr.Interface(fn=chatbot, inputs="text", outputs="text")
iface.launch()
|